文件名称:Conjugate-Gradient-Method
介绍说明--下载内容均来自于网络,请自行研究使用
共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。-Conjugate gradient method (Conjugate Gradient) is between the steepest descent method between the method and Newton' s method, it takes only a first derivative information, but to overcome the steepest descent method convergence slow shortcomings, but also to avoid the Newton method needs to be stored Hesse and disadvantages of computing inverse matrix and the conjugate gradient method is not only one of the most useful methods to solve large linear equations, solution of large-scale nonlinear optimization is one of the most effective algorithm. In various optimization algorithm, conjugate gradient method is a very important one. The advantage is that a small amount of memory required, with step convergence, high stability, and does not require any external parameters.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Conjugate Gradient Method.pdf
data.mat
Conjugate Gradient Method.m