文件名称:labveiw-handbook-PID
介绍说明--下载内容均来自于网络,请自行研究使用
Currently, the Proportional-Integral-Derivative (PID) algorithmis the most
common control algorithm used in dustry. Often, people use PID to
control processes that include heating and cooling systems, fluid level
monitoring, flow control, and pressure control. In PID control, you must
specify a process variable and a setpoint. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate,
and the setpoint is the desired value for the parameter you are controlling.
A PID controller determines a controller output value, such as the heater
power or valve position. The controller applies the controller output value
to the system, which in turn drives the process variable toward the setpoint
value.-Currently, the Proportional-Integral-Derivative (PID) algorithmis the most
common control algorithm used in industry. Often, people use PID to
control processes that include heating and cooling systems, fluid level
monitoring, flow control, and pressure control. In PID control, you must
specify a process variable and a setpoint. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate,
and the setpoint is the desired value for the parameter you are controlling.
A PID controller determines a controller output value, such as the heater
power or valve position. The controller applies the controller output value
to the system, which in turn drives the process variable toward the setpoint
value.
common control algorithm used in dustry. Often, people use PID to
control processes that include heating and cooling systems, fluid level
monitoring, flow control, and pressure control. In PID control, you must
specify a process variable and a setpoint. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate,
and the setpoint is the desired value for the parameter you are controlling.
A PID controller determines a controller output value, such as the heater
power or valve position. The controller applies the controller output value
to the system, which in turn drives the process variable toward the setpoint
value.-Currently, the Proportional-Integral-Derivative (PID) algorithmis the most
common control algorithm used in industry. Often, people use PID to
control processes that include heating and cooling systems, fluid level
monitoring, flow control, and pressure control. In PID control, you must
specify a process variable and a setpoint. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate,
and the setpoint is the desired value for the parameter you are controlling.
A PID controller determines a controller output value, such as the heater
power or valve position. The controller applies the controller output value
to the system, which in turn drives the process variable toward the setpoint
value.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
labveiw handbook PID.pdf