文件名称:leaf-diseases-identification
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [PDF]
- 上传时间:
- 2016-11-22
- 文件大小:
- 215kb
- 下载次数:
- 0次
- 提 供 者:
- nai***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
为了根据作物不同病害程度等级采取不同防治方法,实现作物高产和减少环境污染,提出了一种复杂背景
下的作物叶片病害等级分类算法。首先,利用阈值分割法对黄瓜病害叶片图像进行病斑分割 其次,计算病斑区域中
像素个数与病叶区域中像素个数的比值 最后用作物病害等级分级标准进行比较来确定病害等级类别。利用该方法
在2 种作物5 种常见病害叶片图像数据库上进行了病害等级分类试验,识别精度高达92. 7 。结果表明,该方法对
作物病害叶片等级分类是有效可行的-To take a different control methods based on different levels of crop disease levels, crop yields and reduce environmental pollution, the proposed plant leaves disease classification algorithm under complex background. First, the threshold segmentation method cucumber disease leaf images lesion segmentation secondly, to calculate the ratio of the number of pixels in the lesion area and the number of pixels in the region of diseased leaves and finally a comparative rating of crop disease grading criteria for determining disease level category. Using this method on two kinds of crop disease leaf images using five common of disease classification test, recognition accuracy up to 92. 7 . The results show that the method of crop disease leaf classification is feasible and effective
下的作物叶片病害等级分类算法。首先,利用阈值分割法对黄瓜病害叶片图像进行病斑分割 其次,计算病斑区域中
像素个数与病叶区域中像素个数的比值 最后用作物病害等级分级标准进行比较来确定病害等级类别。利用该方法
在2 种作物5 种常见病害叶片图像数据库上进行了病害等级分类试验,识别精度高达92. 7 。结果表明,该方法对
作物病害叶片等级分类是有效可行的-To take a different control methods based on different levels of crop disease levels, crop yields and reduce environmental pollution, the proposed plant leaves disease classification algorithm under complex background. First, the threshold segmentation method cucumber disease leaf images lesion segmentation secondly, to calculate the ratio of the number of pixels in the lesion area and the number of pixels in the region of diseased leaves and finally a comparative rating of crop disease grading criteria for determining disease level category. Using this method on two kinds of crop disease leaf images using five common of disease classification test, recognition accuracy up to 92. 7 . The results show that the method of crop disease leaf classification is feasible and effective
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于环境信息和颜色特征的作物叶片病害等级识别算法_谢泽奇.pdf