文件名称:neural-network

介绍说明--下载内容均来自于网络,请自行研究使用

深度学习python实现,并附有MNIST上的测试程序,准确率98 以上-Deep learning learns low and high-level features large amounts of unlabeled data, improving classification on different, labeled, datasets. Deep learning can achieve an accuracy of 98 on the MNIST dataset.


(系统自动生成,下载前可以参看下载内容)

下载文件列表





neural-network

..............\.gitignore

..............\deep

..............\....\deep.py

..............\....\display_network.py

..............\....\lazy_deep.py

..............\....\neurolib.py

..............\....\numerical_gradient.py

..............\....\sample_images.py

..............\....\selftaught.py

..............\....\softmax.py

..............\....\sparse_autoencoder.py

..............\display_network.py

..............\neurolib.py

..............\numerical_gradient.py

..............\pca

..............\...\display_network.py

..............\...\pca.py

..............\...\pca2d.py

..............\...\pca_gen.py

..............\...\sample_images.py

..............\rae

..............\...\.gitignore

..............\...\codeDataMoviesEMNLP

..............\...\...................\code

..............\...\...................\....\classifyWithRAE.m

..............\...\...................\....\computeCostAndGradRAE.m

..............\...\...................\....\forwardPropRAE.m

..............\...\...................\....\getAccuracy.m

..............\...\...................\....\getFeatures.m

..............\...\...................\....\getW.m

..............\...\...................\....\initializeParameters.m

..............\...\...................\....\RAECost.m

..............\...\...................\....\read_rtPolarity.m

..............\...\...................\....\soft_cost.m

..............\...\...................\....\trainTestRAE.m

..............\...\...................\....\tree2.m

..............\...\codeNIPS2011

..............\...\............\cell2str.m

..............\...\............\convertStanfordParserTrees.m

..............\...\............\getVectors.m

..............\...\............\reformatTree.m

..............\...\............\reorder.m

..............\...\............\run.m

..............\...\............\runReformatTree.m

..............\...\............\tree.m

..............\...\............\WordLookup.m

..............\...\display_network.py

..............\...\neurolib.py

..............\...\phrase2Vector.sh

..............\...\pyparse.py

..............\...\pypm.py

..............\...\sample_images.py

..............\...\scratch.py

..............\...\sparse_autoencoder.py

..............\...\stanford-parser-2011-09-14

..............\...\..........................\bin

..............\...\..........................\...\makeSerialized.csh

..............\...\..........................\...\run-tb-preproc

..............\...\..........................\build.xml

..............\...\..........................\conf

..............\...\..........................\....\atb-latest.conf

..............\...\..........................\....\ftb-latest.conf

..............\...\..........................\install.sh

..............\...\..........................\lexparser-gui.bat

..............\...\..........................\lexparser-gui.sh

..............\...\..........................\lexparser-lang-train-test.sh

..............\...\..........................\lexparser-lang.sh

..............\...\..........................\lexparser.bat

..............\...\..........................\lexparser.sh

..............\...\..........................\lexparser_lang.def

..............\...\..........................\Makefile

..............\...\..........................\ParserDemo.java

..............\...\..........................\ParserDemo2.java

..............\...\..........................\stanford-parser.jar

..............\...\treeparser.py

..............\README

..............\sample_images.py

..............\selftaught

..............\..........\display_network.py

..............\..........\neurolib.py

..............\..........\numerical_gradient.py

..............\..........\sample_images.py

..............\..........\selftaught.py

..............\..........\softmax.py

..............\..........\sparse_autoencoder.py

..............\..........\train_sparse_autoencoder_on_5to9.py

..............\softmax

..............\.......\display_network.py

..............\.......\numerical_gradient.py

..............\.......\sample_images.py

..............\.......\softmax.py

.....

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org