文件名称:Mixed-Integer-Nonlinear-Programming
- 所属分类:
- 数学计算/工程计算
- 资源属性:
- [PDF]
- 上传时间:
- 2015-10-18
- 文件大小:
- 6.54mb
- 下载次数:
- 0次
- 提 供 者:
- equali******
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
本书是The IMA Volumes in Mathematics and its Applications系列的一本,由Springer-Verlag发表,用于交流每年数学规划算法方面的新成果,希望对于广泛的科学团体有帮助。
许多工程,运筹,和科学应用包括离散或连续的决策变量,以及这些决策变量的非线性关系。这种 Mixed-integer nonlinear programming (MINLP,混合整数非线性规划),兼具来自非线性问题的非凸函数优化,以及来自整数的离散优化,这两方面的挑战。这种问题是优化问题里面建模最灵活的类型之一,但是因为它范围极广,在最一般的情况下,它是几乎无法解的。然而,日渐壮大的研究者和程序员队伍,包括化学工程,运筹研究者,工业工程师,机械工程师,经济学家,统计学家,计算机科学家,运营经理,和数学程序员,都对求解大规模MINLP问题产生兴趣。-Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners ― including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers ― are interested in solving large-scale MINLP instances.
许多工程,运筹,和科学应用包括离散或连续的决策变量,以及这些决策变量的非线性关系。这种 Mixed-integer nonlinear programming (MINLP,混合整数非线性规划),兼具来自非线性问题的非凸函数优化,以及来自整数的离散优化,这两方面的挑战。这种问题是优化问题里面建模最灵活的类型之一,但是因为它范围极广,在最一般的情况下,它是几乎无法解的。然而,日渐壮大的研究者和程序员队伍,包括化学工程,运筹研究者,工业工程师,机械工程师,经济学家,统计学家,计算机科学家,运营经理,和数学程序员,都对求解大规模MINLP问题产生兴趣。-Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners ― including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers ― are interested in solving large-scale MINLP instances.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Mixed Integer Nonlinear Programming.pdf