文件名称:Optimization-code
介绍说明--下载内容均来自于网络,请自行研究使用
最优化算法程序,包含费线性最小二乘、共轭梯度法、牛顿法-Linear least squares optimization algorithm procedures, including fees, conjugate gradient method, Newton method and so on
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Matlab程序
..........\Hess.m
..........\SQP方法
..........\.......\lagsqp.asv
..........\.......\lagsqp.m
..........\.......\newtlagr.asv
..........\.......\newtlagr.m
..........\.......\qpsubp.asv
..........\.......\qpsubp.m
..........\.......\sqpm.asv
..........\.......\sqpm.m
..........\dfun1.m
..........\dgfun1.m
..........\dhfun.m
..........\dpfun.m
..........\ff.m
..........\fun.m
..........\fun1.m
..........\gfun.m
..........\gfun1.m
..........\gg.m
..........\gradd.m
..........\hfun.m
..........\phi.m
..........\乘子法程序
..........\..........\bfgs.m
..........\..........\df1.m
..........\..........\dg1.m
..........\..........\dh1.m
..........\..........\dmpsi.m
..........\..........\f1.m
..........\..........\g1.m
..........\..........\h1.m
..........\..........\mpsi.m
..........\..........\multphr.m
..........\二次规划
..........\........\callqpact.m
..........\........\qlag.asv
..........\........\qlag.m
..........\........\qpact.asv
..........\........\qpact.m
..........\信赖域方法
..........\..........\Hess.m
..........\..........\fun.m
..........\..........\gfun.m
..........\..........\trustm.m
..........\..........\trustq.m
..........\共轭梯度法
..........\..........\frcg.m
..........\..........\fun.m
..........\..........\gfun.m
..........\拟牛顿法
..........\........\bfgs.m
..........\........\broyden.m
..........\........\dfp.m
..........\........\fun.m
..........\........\gfun.m
..........\........\sr1.m
..........\最速下降法与牛顿法
..........\..................\Hess.m
..........\..................\armijo.m
..........\..................\dampnm.m
..........\..................\fun.m
..........\..................\gfun.m
..........\..................\grad.m
..........\..................\revisenm.m
..........\线搜索技术
..........\..........\armijo.m
..........\..........\golds.m
..........\..........\qmin.m
..........\非线性最小二乘问题
..........\..................\Fk.m
..........\..................\JFk.m
..........\..................\lmm.m