文件名称:libORF-master

介绍说明--下载内容均来自于网络,请自行研究使用

针对各种机器学习,深度学习领域的一个matlab工具包-A machine learning library focused on deep learning.Following algorithms and models are provided along with some static utility classes:

- Naive Bayes, Linear Regression, Logistic Regression, Softmax Regression, Linear Support Vector Machine, Non-Linear Support Vector Machine (with RBF kernel),

Feed-forward Neural Network, Embedding Neural Network, Convolutional Neural Network, Sparse Autoencoders, Denoising Autoencoders,

Contractive Autoencoders, Stacked Sparse Autoencoders, Self-Taught Learner and Restricted Boltzmann Machines are tested with this version.

- Rest of the methods are not tested hence not supplied and the progress is as follows:   

  + Deep Belief Nets with Restricted Boltzmann Machines (not tested)

  + Bayes Nets (tested- refactoring)

  + Hidden Markov Models (tested- refactoring)

  + Conditional Random Fields (work in progress)
(系统自动生成,下载前可以参看下载内容)

下载文件列表





libORF-master

.............\.directory

.............\.gitattributes

.............\.gitignore

.............\@Color

.............\......\Color.m

.............\@ContractiveAutoencoder

.............\.......................\ContractiveAutoencoder.m

.............\.......................\private

.............\.......................\.......\computeNumericalGradient.m

.............\.......................\.......\contractiveAutoencoderCostBGD.m

.............\.......................\.......\contractiveAutoencoderCostSGD.m

.............\.......................\.......\dNonLinearity.m

.............\.......................\.......\nonLinearity.m

.............\@ConvUtils

.............\..........\.svn

.............\..........\....\all-wcprops

.............\..........\....\entries

.............\..........\....\text-base

.............\..........\....\.........\ConvUtils.m.svn-base

.............\..........\ConvUtils.m

.............\..........\private

.............\..........\.......\maxoutFprop.c

.............\..........\.......\maxoutFprop.mexa64

.............\@DenoisingAutoencoder

.............\.....................\DenoisingAutoencoder.m

.............\.....................\private

.............\.....................\.......\computeNumericalGradient.m

.............\.....................\.......\dNonLinearity.m

.............\.....................\.......\denoisingAutoencoderCostBGD.m

.............\.....................\.......\denoisingAutoencoderCostSGD.m

.............\.....................\.......\nonLinearity.m

.............\@Edge

.............\.....\Edge.m

.............\@EmbeddingNeuralNet

.............\...................\EmbeddingNeuralNet.m

.............\...................\private

.............\...................\.......\dNonLinearity.m

.............\...................\.......\embeddingNeuralNetCost.m

.............\...................\.......\feedForwardENN.m

.............\...................\.......\nonLinearity.m

.............\...................\.......\params2stack.m

.............\...................\.......\stack2params.m

.............\@Img

.............\....\Img.m

.............\....\private

.............\....\.......\display_img.m

.............\@LinearRegressor

.............\................\LinearRegressor.m

.............\................\private

.............\................\.......\costFunctionLinRegL2.m

.............\@LinearSVM

.............\..........\.svn

.............\..........\....\all-wcprops

.............\..........\....\entries

.............\..........\....\text-base

.............\..........\....\.........\LinearSVM.m.svn-base

.............\..........\LinearSVM.m

.............\..........\private

.............\..........\.......\.svn

.............\..........\.......\....\all-wcprops

.............\..........\.......\....\entries

.............\..........\.......\....\text-base

.............\..........\.......\....\.........\linearSVMcostL2.m.svn-base

.............\..........\.......\computeNumericalGradient.m

.............\..........\.......\linearSVMcostL2.m

.............\@LogisticRegressor

.............\..................\LogisticRegressor.m

.............\..................\private

.............\..................\.......\costFunction.m

.............\..................\.......\costFunctionLogRegL2.m

.............\@NaiveBayesGM

.............\.............\.svn

.............\.............\....\all-wcprops

.............\.............\....\entries

.............\.............\....\text-base

.............\.............\....\.........\NaiveBayesGM.m.svn-base

.............\.............\NaiveBayesGM.m

.............\@NeuralNet

.............\..........\.svn

.............\..........\....\all-wcprops

.............\..........\....\entries

.............\..........\....\text-base

.............\..........\....\.........\NeuralNet.m.svn-base

.............\..........\NeuralNet.m

.............\..........\private

.............\..........\.......\.svn

.............\..........\.......\....\all-wcprops

.............\..........\.......\....\entries

.............\..........\.......\....\text-base

.............\..........\.......\

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org