文件名称:eliminationgauss
介绍说明--下载内容均来自于网络,请自行研究使用
Systems of linear equations
Our Matlab function for naive Gaussian
elimination looks like this:
function x = naiv_gauss(A,b)
n = length(b) x = zeros(n,1)
for k=1:n-1 forward elimination
for i=k+1:n
xmult = A(i,k)/A(k,k)
for j=k+1:n
A(i,j) = A(i,j)-xmult*A(k,j)
end
b(i) = b(i)-xmult*b(k)
end
end
back substitution
x(n) = b(n)/A(n,n)
for i=n-1:-1:1
sum = b(i)
for j=i+1:n
sum = sum-A(i,j)*x(j)
end
x(i) = sum/A(i,i)
end-Systems of linear equations
Our Matlab function for naive Gaussian
elimination looks like this:
function x = naiv_gauss(A,b)
n = length(b) x = zeros(n,1)
for k=1:n-1 forward elimination
for i=k+1:n
xmult = A(i,k)/A(k,k)
for j=k+1:n
A(i,j) = A(i,j)-xmult*A(k,j)
end
b(i) = b(i)-xmult*b(k)
end
end
back substitution
x(n) = b(n)/A(n,n)
for i=n-1:-1:1
sum = b(i)
for j=i+1:n
sum = sum-A(i,j)*x(j)
end
x(i) = sum/A(i,i)
end
Our Matlab function for naive Gaussian
elimination looks like this:
function x = naiv_gauss(A,b)
n = length(b) x = zeros(n,1)
for k=1:n-1 forward elimination
for i=k+1:n
xmult = A(i,k)/A(k,k)
for j=k+1:n
A(i,j) = A(i,j)-xmult*A(k,j)
end
b(i) = b(i)-xmult*b(k)
end
end
back substitution
x(n) = b(n)/A(n,n)
for i=n-1:-1:1
sum = b(i)
for j=i+1:n
sum = sum-A(i,j)*x(j)
end
x(i) = sum/A(i,i)
end-Systems of linear equations
Our Matlab function for naive Gaussian
elimination looks like this:
function x = naiv_gauss(A,b)
n = length(b) x = zeros(n,1)
for k=1:n-1 forward elimination
for i=k+1:n
xmult = A(i,k)/A(k,k)
for j=k+1:n
A(i,j) = A(i,j)-xmult*A(k,j)
end
b(i) = b(i)-xmult*b(k)
end
end
back substitution
x(n) = b(n)/A(n,n)
for i=n-1:-1:1
sum = b(i)
for j=i+1:n
sum = sum-A(i,j)*x(j)
end
x(i) = sum/A(i,i)
end
(系统自动生成,下载前可以参看下载内容)
下载文件列表
eliminationgauss.pdf