文件名称:mycnn
介绍说明--下载内容均来自于网络,请自行研究使用
卷积神经网络识别字符的Matlab程序,包含所需的所有素材和自己改进的一部分代码-Convolutional neural network for handwriten digits recognition: training
and simulation.
This program implements the convolutional neural network for MNIST handwriten
digits recognition, created by Yann LeCun. CNN class allows to make your
own convolutional neural net, defining arbitrary structure and parameters.
and simulation.
This program implements the convolutional neural network for MNIST handwriten
digits recognition, created by Yann LeCun. CNN class allows to make your
own convolutional neural net, defining arbitrary structure and parameters.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
mycnn
.....\license.txt
.....\mycnn
.....\.....\CNN
.....\.....\...\@cnn
.....\.....\...\....\adapt_dw.m
.....\.....\...\....\calcMCR.m
.....\.....\...\....\calchx.m
.....\.....\...\....\calcje.m
.....\.....\...\....\check_finit_dif.m
.....\.....\...\....\cnn.m
.....\.....\...\....\cnn_size.m
.....\.....\...\....\cutrain.m
.....\.....\...\....\init.m
.....\.....\...\....\rbm.m
.....\.....\...\....\sim.m
.....\.....\...\....\subsasgn.m
.....\.....\...\....\subsref.m
.....\.....\...\....\train.m
.....\.....\...\back_conv2.m
.....\.....\...\back_subsample.m
.....\.....\...\changelog.txt
.....\.....\...\cnet.mat
.....\.....\...\cnet_tool.m
.....\.....\...\cnn2singlestruct.m
.....\.....\...\cnn_gui.fig
.....\.....\...\cnn_gui.m
.....\.....\...\cucalcMCR.m
.....\.....\...\cutrain_cnn.m
.....\.....\...\fastFilter2.m
.....\.....\...\license.txt
.....\.....\...\preproc_data.m
.....\.....\...\preproc_image.m
.....\.....\...\rand_std.m
.....\.....\...\readMNIST.m
.....\.....\...\readMNIST_image.m
.....\.....\...\readme.txt
.....\.....\...\rot180.m
.....\.....\...\singlestruct2cnn.m
.....\.....\...\subsample.m
.....\.....\...\tansig_mod.m
.....\.....\...\test_dgt.m
.....\.....\...\train_cnn.m
.....\.....\...\ver 0.8.zip
.....\.....\license.txt
.....\ver 0.8
.....\.......\@cnn
.....\.......\....\adapt_dw.m
.....\.......\....\calcMCR.m
.....\.......\....\calchx.m
.....\.......\....\calcje.m
.....\.......\....\check_finit_dif.m
.....\.......\....\cnn.m
.....\.......\....\cnn_size.m
.....\.......\....\cutrain.m
.....\.......\....\init.m
.....\.......\....\sim.m
.....\.......\....\subsasgn.m
.....\.......\....\subsref.m
.....\.......\....\train.m
.....\.......\back_conv2.m
.....\.......\back_subsample.m
.....\.......\changelog.txt
.....\.......\cnet.mat
.....\.......\cnet_tool.m
.....\.......\cnn2singlestruct.m
.....\.......\cnn_gui.fig
.....\.......\cnn_gui.m
.....\.......\cucalcMCR.m
.....\.......\cutrain_cnn.m
.....\.......\fastFilter2.m
.....\.......\license.txt
.....\.......\preproc_data.m
.....\.......\preproc_image.m
.....\.......\rand_std.m
.....\.......\readMNIST.m
.....\.......\readMNIST_image.m
.....\.......\readme.txt
.....\.......\rot180.m
.....\.......\singlestruct2cnn.m
.....\.......\subsample.m
.....\.......\tansig_mod.m
.....\.......\test_dgt.m
.....\.......\train_cnn.m
.....\.......\ver 0.8.zip