文件名称:active_learning-master
介绍说明--下载内容均来自于网络,请自行研究使用
active learning
This software package provides a toolbox for testing pool-based active-learning algorithms in MATLAB.-This software package provides a toolbox for testing pool-based active-learning algorithms in MATLAB.
This software package provides a toolbox for testing pool-based active-learning algorithms in MATLAB.-This software package provides a toolbox for testing pool-based active-learning algorithms in MATLAB.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
active_learning-master
......................\LICENSE
......................\README.md
......................\active_learning.m
......................\label_oracles
......................\.............\bernoulli_oracle.m
......................\.............\label_oracles.m
......................\.............\lookup_oracle.m
......................\.............\multinomial_oracle.m
......................\models
......................\......\cheating_model.m
......................\......\ensemble.m
......................\......\gaussian_process_model.m
......................\......\knn_model.m
......................\......\label_propagation_model.m
......................\......\model_memory_wrapper.m
......................\......\models.m
......................\......\random_forest_model.m
......................\other
......................\.....\get_label_oracle.m
......................\.....\get_model.m
......................\.....\get_query_strategy.m
......................\.....\get_score_function.m
......................\.....\get_selector.m
......................\query_strategies
......................\................\argmax.m
......................\................\argmin.m
......................\................\expected_error_reduction.m
......................\................\margin_sampling.m
......................\................\query_by_committee.m
......................\................\query_strategies.m
......................\................\uncertainty_sampling.m
......................\score_functions
......................\...............\calculate_entropies.m
......................\...............\expected_loss_lookahead.m
......................\...............\expected_loss_naive.m
......................\...............\expected_utility_lookahead.m
......................\...............\expected_utility_naive.m
......................\...............\loss_functions
......................\...............\..............\expected_01_loss.m
......................\...............\..............\expected_log_loss.m
......................\...............\..............\loss_functions.m
......................\...............\margin.m
......................\...............\marginal_entropy.m
......................\...............\score_functions.m
......................\selectors
......................\.........\fixed_test_set_selector.m
......................\.........\graph_walk_selector.m
......................\.........\identity_selector.m
......................\.........\meta_selectors
......................\.........\..............\complement_selector.m
......................\.........\..............\intersection_selector.m
......................\.........\..............\union_selector.m
......................\.........\probability_treshold_selector.m
......................\.........\random_selector.m
......................\.........\selectors.m
......................\.........\unlabeled_selector.m