文件名称:Multilabel-Image-Classification-via-High
介绍说明--下载内容均来自于网络,请自行研究使用
Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to examplelabel pair 2) different labels are seldom independent, and label correlations provide critical information for efficient learning 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining
method is required to discover informative label correlations-Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to examplelabel pair 2) different labels are seldom independent, and label correlations provide critical information for efficient learning 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining
method is required to discover informative label correlations
method is required to discover informative label correlations-Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to examplelabel pair 2) different labels are seldom independent, and label correlations provide critical information for efficient learning 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining
method is required to discover informative label correlations
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Multilabel Image Classification via High.doc