文件名称:med2d
介绍说明--下载内容均来自于网络,请自行研究使用
一种基于最小熵反褶积( ]8+83)3 6+D*(A4 Q20(+W(-)D8(+,]6Q) 的滚动轴承故障特征提取方法: 在利用 /X 模型去除齿轮啮合产生的确定性信号的基础上,对保留信号进行最小熵反褶积,增强冲击信号"该方法避免了传统轴承故障诊断方法中带通滤波器设计的难题,实车测试表明: 与共振解调技术相比,该方法提取的滚动轴承故障特征更加明显,更适合于工程应用"-Based on minimum entropy deconvolution (] 8+83) 3 6+D* (A4 Q20 (+W (-) D8 (+,] 6Q)' s fault feature extraction method: using/X model to remove the uncertainty generated signal gear on the basis of the retention signal minimum entropy deconvolution, and enhance the impact of signal " This method avoids the problems of traditional bearing fault diagnosis method of the bandpass filter design, real vehicle test showed that: compared with the resonance demodulation technology, which fault feature extraction method is more obvious, more suitable for engineering applications. "
(系统自动生成,下载前可以参看下载内容)
下载文件列表
med2d.m