文件名称:SVM-KMtoolbox
介绍说明--下载内容均来自于网络,请自行研究使用
svm-km支持向量机工具箱,特点是他们能够同时最小化经验误差与最大化几何边缘区.因此支持向量机也被称为最大边缘区分类器.-svm-km SVM Toolbox, is characterized by experience that they can while minimizing errors and maximizing geometric border zone. therefore support vector machine is also known as the maximum marginal zone classification.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
SVM-KMtoolbox\AdaptScalSVM\costlbfixed.m
.............\............\costlfixed.m
.............\............\costwbfixed.m
.............\............\costwfixed.m
.............\............\ExampledemoAdaptScal.m
.............\............\ExampleFeatSelAdaptScal.m
.............\............\gradlbfixed.m
.............\............\gradlfixed.m
.............\............\gradwbfixed.m
.............\............\gradwfixed.m
.............\............\LagrangeUpdate.m
.............\............\SigmaUpdate.m
.............\............\svmfit.m
.............\............\svmfitconj.m
.............\contents.m
.............\cout.m
.............\dataset.asv
.............\dataset.m
.............\dataset1.mat
.............\dataset2.mat
.............\dataset3.mat
.............\featselreg\exfeatselreg1.m
.............\..........\FeatSelregalpha.m
.............\..........\FeatSelregalphaGD.m
.............\..........\FeatSelregalphaGDrandom.m
.............\..........\FeatSelreglinearL1.m
.............\..........\FeatSelregmargin.m
.............\..........\FeatSelregmarginGD.m
.............\..........\FeatSelregmarginGDrandom.m
.............\..........\FeatSelregr2w2.m
.............\..........\FeatSelregr2w2GD.m
.............\..........\FeatSelregr2w2GDrandom.m
.............\..........\FeatSelregspanbound.m
.............\..........\FeatSelregspanboundGD.m
.............\..........\FeatSelregspanboundGDrandom.m
.............\..........\r2alpharegL2.m
.............\..........\spanestimateregL2.m
.............\FeatureSelection\featselcorrcoeff.m
.............\................\featselkernelderivative.m
.............\................\FeatSelmargdif.m
.............\................\FeatSelmargdif1v1.m
.............\................\FeatSelmargin.m
.............\................\FeatSelr2w2.m
.............\................\FeatSelr2w2diff.m
.............\fileaccess.m
.............\functioneval.m
.............\gda.m
.............\givrot.m
.............\kbp\BuildTrapScale.m
.............\...\calcdistance.m
.............\...\CalcTrapScale.m
.............\...\exlar.m
.............\...\exlar1.m
.............\...\exlarrealdata.m
.............\...\exlarsignalclassif.m
.............\...\exmultikernellarclass.m
.............\...\HingeLAR.m
.............\...\HingeLAR2.m
.............\...\LAR.m
.............\...\LARval.m
.............\...\multiplekernel.m
.............\...\normalizekernelLAR.m
.............\...\plot2Ddec.m
.............\...\pyrim.mat
.............\...\testHingeLAR.m
.............\kernelpca.m
.............\kernelpcaproj.m
.............\kernelset.m
.............\libsvminterface\mexSVMClass.dll
.............\...............\mexSVMClass.mexglx
.............\...............\mexSVMTrain.dll
.............\...............\mexSVMTrain.mexglx
.............\...............\svmclasslib.m
.............\...............\svmvallib.m
.............\license.txt
.............\LPsvmclass.asv
.............\LPsvmclass.m
.............\LPsvmreg.m
.............\monqp.m
.............\monqpCinfty.m
.............\normalizekernel.m
.............\phispan.m
.............\r2smallestsphere.m
.............\.egpath\exregpathoneclasssvm.asv
.............\.......\exregpathoneclasssvm.m
.............\.......\regpathsvmoneclass.m
.............\.......\TransformPathFromNu.m
.............\regsolve.m
.............\rncalc.m
.............\rnval.m
.............\spanestimate.m
.............\svmclass.m
.............\svmclassL2.m
.............\svmclassL2LS.m
.............\svmclassLS.asv
.............\svmclassLS.m
.............\svmclassnpa.m
.............\svmkernel.m
.............\svmmulticlass.m
.............\svmmulticlassoneagainstall.asv