文件名称:deblurring_demo-1.0

  • 所属分类:
  • matlab例程
  • 资源属性:
  • [Matlab] [源码]
  • 上传时间:
  • 2013-07-04
  • 文件大小:
  • 883kb
  • 下载次数:
  • 0次
  • 提 供 者:
  • 孙**
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

Bayesian Deblurring with Integrated Noise Estimation-Bayesian Deblurring with Integrated Noise Estimation

Conventional non-blind image deblurring algorithms

involve natural image priors and maximum a-posteriori

(MAP) estimation. As a consequence of MAP estimation,

separate pre-processing steps such as noise estimation and

training of the regularization parameter are necessary to

avoid user interaction. Moreover, MAP estimates involving

standard natural image priors have been found lacking in

terms of restoration performance. To address these issues

we introduce an integrated Bayesian fr a mework that unifies

non-blind deblurring and noise estimation, thus freeing the

user of tediously pre-determining a noise level. A samplingbased

technique allows to integrate out the unknown noise

level and to perform deblurring using the Bayesian minimum

mean squared error estimate (MMSE), which requires

no regularization parameter and yields higher performance

than MAP estimates when combined with a learned highorder

image prior. A quan
(系统自动生成,下载前可以参看下载内容)

下载文件列表





deblurring_demo

...............\+learned_models

...............\...............\cvpr_3x3_foe.m

...............\...............\cvpr_pw_mrf.m

...............\+pml

...............\....\+distributions

...............\....\..............\@discrete

...............\....\..............\.........\discrete.m

...............\....\..............\.........\eval.m

...............\....\..............\.........\kl_divergence.m

...............\....\..............\.........\mle.m

...............\....\..............\.........\plot.m

...............\....\..............\.........\private

...............\....\..............\.........\.......\montecarlo.m

...............\....\..............\.........\sample.m

...............\....\..............\.........\semilogy.m

...............\....\..............\.........\test

...............\....\..............\.........\....\test_all.m

...............\....\..............\@foe

...............\....\..............\....\energy.m

...............\....\..............\....\eval.m

...............\....\..............\....\foe.m

...............\....\..............\....\log_grad_x.m

...............\....\..............\....\unnorm.m

...............\....\..............\@gsm

...............\....\..............\....\em.m

...............\....\..............\....\eval.m

...............\....\..............\....\gsm.m

...............\....\..............\....\log_grad_weights.m

...............\....\..............\....\log_grad_x.m

...............\....\..............\....\sample.m

...............\....\..............\....\test

...............\....\..............\....\....\test_all.m

...............\....\..............\....\....\test_density.m

...............\....\..............\....\....\test_ho_derivatives.m

...............\....\..............\....\z_distribution.m

...............\....\..............\@gsm_foe

...............\....\..............\........\cd.m

...............\....\..............\........\energy_grad_J_tilde.m

...............\....\..............\........\energy_grad_weights.m

...............\....\..............\........\gsm_foe.m

...............\....\..............\........\log_grad_theta.m

...............\....\..............\........\private

...............\....\..............\........\.......\estimator_helper.m

...............\....\..............\........\sample_x.m

...............\....\..............\........\sample_z.m

...............\....\..............\........\test

...............\....\..............\........\....\test_density.m

...............\....\..............\........\....\test_filter.m

...............\....\..............\........\....\test_learning.m

...............\....\..............\........\....\test_sampling.m

...............\....\..............\........\z_distribution.m

...............\....\..............\@gsm_pairwise_mrf

...............\....\..............\.................\cd.m

...............\....\..............\.................\fit_precision.m

...............\....\..............\.................\gsm_pairwise_mrf.m

...............\....\..............\.................\log_grad_log_weights.m

...............\....\..............\.................\private

...............\....\..............\.................\.......\estimator_helper.m

...............\....\..............\.................\test

...............\....\..............\.................\....\test_density.m

...............\....\..............\.................\....\test_learning.m

...............\....\..............\.................\....\test_statistics.m

...............\....\..............\@pairwise_mrf

...............\....\..............\.............\pairwise_mrf.m

...............\....\..............\density.m

...............\....\..............\distribution.m

...............\....\+image_proc

...............\....\...........\convmtxn.m

...............\....\...........\imfiltermtx.m

...............\....\...........\make_convn_mat.m

...............\....\...........\make_imfilter_mat.m

...............\....\...........\psnr.m

...............\....\...........\ssim_index.m

...............\....\+numerical

...............\....\....

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org