文件名称:KSVD_Matlab_ToolBox
介绍说明--下载内容均来自于网络,请自行研究使用
这是线性训练K-SVD词典的一种新算法
表示的信号。给定一组信号,K-SVD试图
提取物,可以稀疏表示这些信号最好的词典。
深入讨论了K-SVD算法中可以找到的:
“K-SVD:设计的超完备字典的一个算法
稀疏表示”,由M.阿哈,M. Elad和点写,适应性,
在IEEE Transactions出现。在信号处理,卷54,11号,
第4311-4322,十一月2006。-he K-SVD is a new algorithm for training dictionaries for linear
representation of signals. Given a set of signals, the K-SVD tries to
extract the best dictionary that can sparsely represent those signals.
Thorough discussion concerning the K-SVD algorithm can be found in:
"The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for
Sparse Representation", written by M. Aharon, M. Elad, and A.M. Bruckstein,
and appeared in the IEEE Trans. On Signal Processing, Vol. 54, no. 11,
pp. 4311-4322, November 2006.
表示的信号。给定一组信号,K-SVD试图
提取物,可以稀疏表示这些信号最好的词典。
深入讨论了K-SVD算法中可以找到的:
“K-SVD:设计的超完备字典的一个算法
稀疏表示”,由M.阿哈,M. Elad和点写,适应性,
在IEEE Transactions出现。在信号处理,卷54,11号,
第4311-4322,十一月2006。-he K-SVD is a new algorithm for training dictionaries for linear
representation of signals. Given a set of signals, the K-SVD tries to
extract the best dictionary that can sparsely represent those signals.
Thorough discussion concerning the K-SVD algorithm can be found in:
"The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for
Sparse Representation", written by M. Aharon, M. Elad, and A.M. Bruckstein,
and appeared in the IEEE Trans. On Signal Processing, Vol. 54, no. 11,
pp. 4311-4322, November 2006.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
KSVD_Matlab_ToolBox
...................\KSVD.m
...................\KSVD_NN.m
...................\MOD.m
...................\NN_BP.m
...................\OMP.m
...................\OMPerr.m
...................\README.txt
...................\barbara.png
...................\boat.png
...................\demo1.m
...................\demo2.m
...................\demo3.m
...................\denoiseImageDCT.m
...................\denoiseImageGlobal.m
...................\denoiseImageKSVD.m
...................\displayDictionaryElementsAsImage.asv
...................\displayDictionaryElementsAsImage.m
...................\gererateSyntheticDictionaryAndData.m
...................\globalTrainedDictionary.mat
...................\house.png
...................\lena.png
...................\my_im2col.m
...................\peppers256.png