文件名称:elm_example
介绍说明--下载内容均来自于网络,请自行研究使用
极限学习机(extreme learning machine)ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。2006年由南洋理工大学黄广斌副教授提出。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。-Extreme Learning Machine (extreme learning machine) ELM is an easy-to-use and effective single hidden layer feedforward neural network the SLFNs learning algorithm. 2006 by the Nanyang Technological University Associate Professor Huang Guangbin. Traditional neural network learning algorithm (BP) artificial network training parameters, and it is easy to generate a local optimal solution. Extreme Learning Machine network only need to set the number of hidden nodes, the algorithm implementation process does not need to adjust the network input weights and hidden element of bias, and only optimal solution, so the learning speed and generalization good performance advantages.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
EXAMP1
......\ELM.asv
......\ELM.m
......\sinc_test
......\sinc_train
EXAMP2
......\ELM-Talk.pdf
......\ELM.asv
......\ELM.m
......\diabetes_test
......\diabetes_train
......\main.m