文件名称:linear-algebra
介绍说明--下载内容均来自于网络,请自行研究使用
李超+线性代数在OI中的应用与题目讲解
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。-Lie+ linear algebra applications with the subject in the OI explain
Linear algebra is a branch of mathematics, it is a vector, the vector space (or linear space), the linear transformation and the finite-dimensional linear equations. The vector space is an important issue in modern mathematics Thus, linear algebra is widely used in abstract algebra and functional analysis able to be specifically expressed through analytic geometry, linear algebra. The theory of linear algebra has been generalized in operator theory. As scientific research in nonlinear models can often be approximated by linear models, linear algebra is widely used in the natural sciences and social sciences.
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。-Lie+ linear algebra applications with the subject in the OI explain
Linear algebra is a branch of mathematics, it is a vector, the vector space (or linear space), the linear transformation and the finite-dimensional linear equations. The vector space is an important issue in modern mathematics Thus, linear algebra is widely used in abstract algebra and functional analysis able to be specifically expressed through analytic geometry, linear algebra. The theory of linear algebra has been generalized in operator theory. As scientific research in nonlinear models can often be approximated by linear models, linear algebra is widely used in the natural sciences and social sciences.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
李超+线性代数在OI中的应用与题目讲解.ppt