文件名称:em
介绍说明--下载内容均来自于网络,请自行研究使用
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。
-In the statistical calculations, the maximum expected (EM) algorithm parameter maximum likelihood estimates or maximum a posteriori estimation algorithm to find the probability (probabilistic) model, in which the probability model is dependent on unobservable hidden variables (Latent Variable). Maximum expected areas often used in machine learning and computer vision, data clustering (Data Clustering).
-In the statistical calculations, the maximum expected (EM) algorithm parameter maximum likelihood estimates or maximum a posteriori estimation algorithm to find the probability (probabilistic) model, in which the probability model is dependent on unobservable hidden variables (Latent Variable). Maximum expected areas often used in machine learning and computer vision, data clustering (Data Clustering).
(系统自动生成,下载前可以参看下载内容)
下载文件列表
我们的作业1.docx
09071315284411bf44da827afb.rar
matlab概率统计.pdf
QQ截图未命名.png
em.m
em.docx
我们的作业.docx
1.docx
BetaBinomial模型基于EM算法的应用研究.pdf
Matlab常用命令.doc