文件名称:BuildingRobustSimulation-basedFiltersforEvolvingDa
介绍说明--下载内容均来自于网络,请自行研究使用
The need for accurate monitoring and analysis of sequential data arises in many scientic, industrial
and nancial problems. Although the Kalman lter is effective in the linear-Gaussian
case, new methods of dealing with sequential data are required with non-standard models.
Recently, there has been renewed interest in simulation-based techniques. The basic idea behind
these techniques is that the current state of knowledge is encapsulated in a representative
sample from the appropriate posterior distribution. As time goes on, the sample evolves and
adapts recursively in accordance with newly acquired data. We give a critical review of recent
developments, by reference to oil well monitoring, ion channel monitoring and tracking
problems, and propose some alternative algorithms that avoid the weaknesses of the current
methods.
and nancial problems. Although the Kalman lter is effective in the linear-Gaussian
case, new methods of dealing with sequential data are required with non-standard models.
Recently, there has been renewed interest in simulation-based techniques. The basic idea behind
these techniques is that the current state of knowledge is encapsulated in a representative
sample from the appropriate posterior distribution. As time goes on, the sample evolves and
adapts recursively in accordance with newly acquired data. We give a critical review of recent
developments, by reference to oil well monitoring, ion channel monitoring and tracking
problems, and propose some alternative algorithms that avoid the weaknesses of the current
methods.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
压缩包 : 113172202buildingrobustsimulation-basedfiltersforevolvingdatasets.rar 列表 carpenter99building.pdf