文件名称:classify
- 所属分类:
- matlab例程
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 644kb
- 下载次数:
- 0次
- 提 供 者:
- Chetna *******
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
Image Texture Classification Using Combined Grey Level Co-Occurrence Probabilities and Support Vector Machines
Texture refers to properties that represent the surface or structure of an object and is defined as something consisting of mutually related elements. The main focus in this study is to do texture segmentation and classification for texture digital images. Grey level co-occurrence probabilities (GLCP) method is being used to extract features from texture image. Gaussian support vector machines (GSVM) have been proposed to do classification on the extracted features. A popular Brodatz texture album had been chosen to test out the result. In this study, a combined GLCP-GSVM shows an improvement over GLCP in terms of classification accuracy.
Texture refers to properties that represent the surface or structure of an object and is defined as something consisting of mutually related elements. The main focus in this study is to do texture segmentation and classification for texture digital images. Grey level co-occurrence probabilities (GLCP) method is being used to extract features from texture image. Gaussian support vector machines (GSVM) have been proposed to do classification on the extracted features. A popular Brodatz texture album had been chosen to test out the result. In this study, a combined GLCP-GSVM shows an improvement over GLCP in terms of classification accuracy.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
classify\broadtz link.txt
........\classify.m
........\database\1_1.png
........\........\1_2.png
........\........\1_3.png
........\........\1_4.png
........\........\1_5.png
........\........\1_6.png
........\........\1_7.png
........\........\1_8.png
........\........\1_9.png
........\........\2_1.png
........\........\2_2.png
........\........\2_3.png
........\........\2_4.png
........\........\2_5.png
........\........\2_6.png
........\........\2_7.png
........\........\2_8.png
........\........\2_9.png
........\........\Thumbs.db
........\database
classify
........\classify.m
........\database\1_1.png
........\........\1_2.png
........\........\1_3.png
........\........\1_4.png
........\........\1_5.png
........\........\1_6.png
........\........\1_7.png
........\........\1_8.png
........\........\1_9.png
........\........\2_1.png
........\........\2_2.png
........\........\2_3.png
........\........\2_4.png
........\........\2_5.png
........\........\2_6.png
........\........\2_7.png
........\........\2_8.png
........\........\2_9.png
........\........\Thumbs.db
........\database
classify