文件名称:Analytical_Poroelastic
介绍说明--下载内容均来自于网络,请自行研究使用
各向同性空隙介质中波的传播的解析形式,应用下文的方法:
Dai, N., Vafidis, A. & Kanasewich, E.R., 1995. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method, Geophysics, 60, 327-340.
更加详细的介绍见英文描述,该代码对于做波场模拟的同学有很好的参考价值。-MATLAB scr ipt for obtaning the analytical solution for wave propagation in a homogenous poroelastic medium, based on the solution described in the paper by Dai et al. (1995).
The source used is a point explosion with time component Ricker or gaussian first derivative. The solution is computed in the frequency domain. Only non-viscous fluids are considered. The resulting seismograms are the radial components of the solid and liquid particle velocities.
Reference:
Dai, N., Vafidis, A. & Kanasewich, E.R., 1995. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method, Geophysics, 60, 327-340.
Dai, N., Vafidis, A. & Kanasewich, E.R., 1995. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method, Geophysics, 60, 327-340.
更加详细的介绍见英文描述,该代码对于做波场模拟的同学有很好的参考价值。-MATLAB scr ipt for obtaning the analytical solution for wave propagation in a homogenous poroelastic medium, based on the solution described in the paper by Dai et al. (1995).
The source used is a point explosion with time component Ricker or gaussian first derivative. The solution is computed in the frequency domain. Only non-viscous fluids are considered. The resulting seismograms are the radial components of the solid and liquid particle velocities.
Reference:
Dai, N., Vafidis, A. & Kanasewich, E.R., 1995. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method, Geophysics, 60, 327-340.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Analytical_Poroelastic.m