文件名称:Image-Segmentation-Method
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- 上传时间:
- 2012-11-26
- 文件大小:
- 3.19mb
- 下载次数:
- 0次
- 提 供 者:
- 赵*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
本文主要研究基于水平集方法的活动轮廓模型图像分割,在回顾活动轮廓模
型发展的基础上,介绍了曲线演化理论及其水平集方法,证明了水平集方法可以
有稳定的数值实现方式且其处理拓扑变化的自然性,进一步引出了变分水平集方
法。
本文介绍了两种不同的几何活动轮廓模型:基于梯度信息的李纯明模型以及
基于区域信息的 Chan-Vese 模型(C-V 模型)。在分析上述两模型的优缺点上,提
出了一种改进的 C-V 模型,改进模型引入了距离约束项,同时对基于区域的外部
能量项进行了改进,使得水平集函数重新初始化寓于模型的演化之中,分割结果
对参数的依赖性减小。
-This paper mainly study image segmentation of active contour model based on
level set. After reviewing the development of the active contour model, curve evolution
and level set method are presented, then we proved that the level set method has a stable
numerical realization and can describe the topology change of the contour naturally, in
addition we introduce level set of variational method.
We introduce two different GAC models in this paper: Li Chunming model which
is based on gradient information and Chan-Vese model (C-V model) which is based
on region information. Based on the drawbacks and advantages of these two models, we
improve the C-V model by adding penalizing energy term of signed distance function,
at the same time, mending the external energy term which based on region information,
then the re-initialization of the level set can accomplish in the model evolution, and the
degree of the segmentation result depend on the parameters decline.
型发展的基础上,介绍了曲线演化理论及其水平集方法,证明了水平集方法可以
有稳定的数值实现方式且其处理拓扑变化的自然性,进一步引出了变分水平集方
法。
本文介绍了两种不同的几何活动轮廓模型:基于梯度信息的李纯明模型以及
基于区域信息的 Chan-Vese 模型(C-V 模型)。在分析上述两模型的优缺点上,提
出了一种改进的 C-V 模型,改进模型引入了距离约束项,同时对基于区域的外部
能量项进行了改进,使得水平集函数重新初始化寓于模型的演化之中,分割结果
对参数的依赖性减小。
-This paper mainly study image segmentation of active contour model based on
level set. After reviewing the development of the active contour model, curve evolution
and level set method are presented, then we proved that the level set method has a stable
numerical realization and can describe the topology change of the contour naturally, in
addition we introduce level set of variational method.
We introduce two different GAC models in this paper: Li Chunming model which
is based on gradient information and Chan-Vese model (C-V model) which is based
on region information. Based on the drawbacks and advantages of these two models, we
improve the C-V model by adding penalizing energy term of signed distance function,
at the same time, mending the external energy term which based on region information,
then the re-initialization of the level set can accomplish in the model evolution, and the
degree of the segmentation result depend on the parameters decline.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Research on Image Segmentation Method.kdh