文件名称:out-matlab
介绍说明--下载内容均来自于网络,请自行研究使用
SVM回归,用于实现支持向量机(SVM
)回归拟合的问题。可以用来做一些短期的预测,如短期负荷预测。-svm regression, used to implement support vector machine (SVM
) Regression fitting problems. Can be used to do some short-term forecasts, such as short-term load forecasting.
)回归拟合的问题。可以用来做一些短期的预测,如短期负荷预测。-svm regression, used to implement support vector machine (SVM
) Regression fitting problems. Can be used to do some short-term forecasts, such as short-term load forecasting.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
43_1PointShift | ||
..............\linear | ||
..............\......\1.fig | ||
..............\......\2.fig | ||
..............\......\4.fig | ||
..............\......\data_ns.mat | ||
..............\......\data_s.mat | ||
..............\RBF | ||
..............\...\1.fig | ||
..............\...\2.fig | ||
..............\...\3.fig | ||
..............\...\4.fig | ||
..............\...\data_s.mat | ||
43_1PointShift.mat | ||
43_20PointShift.mat | ||
98.mat | ||
98.xls | ||
98_1PointShift.mat | ||
98_20PointShift.mat | ||
b15.mat | ||
b15.xls | ||
b15_1PointShift.mat | ||
b15_20PointShift.mat | ||
b15_30PointShift.mat | ||
bat.asv | ||
bat.m | ||
ca.mat | ||
ca.xls | ||
ca_1PointShift.mat | ||
ca_20PointShift.mat | ||
CorssV.asv | ||
CrossValidation.asv | ||
CrossValidation.m | ||
data43.mat | ||
Easy.asv | ||
libsvmread.c | ||
libsvmread.mexw32 | ||
libsvmwrite.c | ||
libsvmwrite.mexw32 | ||
make.m | ||
Makefile | ||
README | ||
scale.asv | ||
ScaleStart.asv | ||
ScaleStart.m | ||
SplitAndScale.asv | ||
svm.obj | ||
svm_model_matlab.c | ||
svm_model_matlab.h | ||
svm_model_matlab.obj | ||
SVMcg.asv | ||
SVMcg.m | ||
svmpredict.c | ||
svmpredict.mexw32 | ||
svmtrain.asv | ||
svmtrain.c | ||
svmtrain.mexw32 | ||
TrainAndTest.asv | ||
UnscaleStart.asv | ||
UnscaleStart.m | ||
不预测纯拟合,训练集43f(1-5000) | 测试集43f(5001-end).fig | |
不预测纯拟合,训练集43f(1-5000) | 测试集43f(5001-end).jpg | |
'第一组数据20点偏移,无归一化,线性核函数 | -c 4 -g 32.fig | |
43_20PointShift | ||
...............\linear | ||
...............\......\1.fig | ||
...............\......\2.fig | ||
...............\......\4.fig | ||
...............\......\data_ns.mat | ||
...............\......\data_s.mat | ||
...............\RBF | ||
...............\...\1.fig | ||
...............\...\2.fig | ||
...............\...\3.fig | ||
...............\...\4.fig | ||
...............\...\data_ns.mat | ||
...............\...\data_s.mat | ||
98_1PointShift | ||
..............\RBF | ||
..............\...\1.fig | ||
..............\...\2.fig | ||
..............\...\data_s.mat | ||
..............\...\CrossValidation | ||
..............\...\...............\1.fig | ||
..............\...\...............\2.fig | ||
..............\...\...............\3.fig | ||
..............\...\...............\4.fig | ||
..............\...\...............\最优参数下结果(没什么大区别).fig | ||
..............\...\...............\源参数结果.fig | ||
98_20PointShift | ||
...............\RBF | ||
...............\...\1.fig | ||
...............\...\2.fig | ||
...............\...\data_s.mat | ||
...............\...\CrossValidation | ||
...............\...\...............\1.fig | ||
...............\...\...............\2.fig | ||
...............\...\...............\3.fig | ||
...............\...\...............\4.fig | ||
...............\...\...............\最优参数下结果(没什么大区别).fig |