文件名称:matlab-algorithms
介绍说明--下载内容均来自于网络,请自行研究使用
《MATLAB语言常用算法程序集》的光盘,方便大家学习常用的数值算法的matlab编程。-MATLAB algorithms commonly used in assembly language
相关搜索: 数值算法
(系统自动生成,下载前可以参看下载内容)
下载文件列表
《MATLAB语言常用算法程序集》的光盘
..................................\光盘使用说明.doc
..................................\光盘的算法程序索引.xls
..................................\第10章 非线性方程组求解
..................................\........................\DiffParam1.m
..................................\........................\DiffParam2.m
..................................\........................\mulBFS.m
..................................\........................\mulConj.m
..................................\........................\mulDamp.m
..................................\........................\mulDFP.m
..................................\........................\mulDiscNewton.m
..................................\........................\mulDNewton.m
..................................\........................\mulFastDown.m
..................................\........................\mulGSND.m
..................................\........................\mulGXF1.m
..................................\........................\mulGXF2.m
..................................\........................\mulMix.m
..................................\........................\mulNewton.m
..................................\........................\mulNewtonSOR.m
..................................\........................\mulNewtonStev.m
..................................\........................\mulNumYT.m
..................................\........................\mulRank1.m
..................................\........................\mulSimNewton.m
..................................\........................\mulStablePoint.m
..................................\........................\mulVNewton.m
..................................\........................\SOR.m
..................................\第11章 解线性方程组的直接法
..................................\............................\conjgrad.m
..................................\............................\Crout.m
..................................\............................\Doolittle.m
..................................\............................\followup.m
..................................\............................\GaussJordanXQ.m
..................................\............................\GaussXQAllMain.m
..................................\............................\GaussXQByOrder.m
..................................\............................\GaussXQLineMain.m
..................................\............................\InvAddSide.m
..................................\............................\qrxq.m
..................................\............................\SymPos1.m
..................................\............................\SymPos2.m
..................................\............................\SymPos3.m
..................................\............................\Yesf.m
..................................\第12章 解线性方程组的迭代法
..................................\............................\BGS.m
..................................\............................\BJ.m
..................................\............................\BSOR.m
..................................\............................\conjgrad.m
..................................\............................\crs.m
..................................\............................\fastdown.m
..................................\............................\gauseidel.m
..................................\............................\grs.m
..................................\............................\jacobi.m
..................................\............................\JOR.m
..................................\............................\preconjgrad.m
..................................\............................\richason.m
..................................\............................\rs.m
..................................\............................\SOR.m
..................................\............................\SSOR.m
..................................\.
..................................\光盘使用说明.doc
..................................\光盘的算法程序索引.xls
..................................\第10章 非线性方程组求解
..................................\........................\DiffParam1.m
..................................\........................\DiffParam2.m
..................................\........................\mulBFS.m
..................................\........................\mulConj.m
..................................\........................\mulDamp.m
..................................\........................\mulDFP.m
..................................\........................\mulDiscNewton.m
..................................\........................\mulDNewton.m
..................................\........................\mulFastDown.m
..................................\........................\mulGSND.m
..................................\........................\mulGXF1.m
..................................\........................\mulGXF2.m
..................................\........................\mulMix.m
..................................\........................\mulNewton.m
..................................\........................\mulNewtonSOR.m
..................................\........................\mulNewtonStev.m
..................................\........................\mulNumYT.m
..................................\........................\mulRank1.m
..................................\........................\mulSimNewton.m
..................................\........................\mulStablePoint.m
..................................\........................\mulVNewton.m
..................................\........................\SOR.m
..................................\第11章 解线性方程组的直接法
..................................\............................\conjgrad.m
..................................\............................\Crout.m
..................................\............................\Doolittle.m
..................................\............................\followup.m
..................................\............................\GaussJordanXQ.m
..................................\............................\GaussXQAllMain.m
..................................\............................\GaussXQByOrder.m
..................................\............................\GaussXQLineMain.m
..................................\............................\InvAddSide.m
..................................\............................\qrxq.m
..................................\............................\SymPos1.m
..................................\............................\SymPos2.m
..................................\............................\SymPos3.m
..................................\............................\Yesf.m
..................................\第12章 解线性方程组的迭代法
..................................\............................\BGS.m
..................................\............................\BJ.m
..................................\............................\BSOR.m
..................................\............................\conjgrad.m
..................................\............................\crs.m
..................................\............................\fastdown.m
..................................\............................\gauseidel.m
..................................\............................\grs.m
..................................\............................\jacobi.m
..................................\............................\JOR.m
..................................\............................\preconjgrad.m
..................................\............................\richason.m
..................................\............................\rs.m
..................................\............................\SOR.m
..................................\............................\SSOR.m
..................................\.