文件名称:imm3851

  • 所属分类:
  • 单片机(51,AVR,MSP430等)
  • 资源属性:
  • [PDF]
  • 上传时间:
  • 2012-11-26
  • 文件大小:
  • 638kb
  • 下载次数:
  • 0次
  • 提 供 者:
  • k***
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

This project describes the work done on the development of an audio segmentation and classification system. Many existing works on audio classification deal with the problem of classifying known homogeneous audio segments. In this work, audio recordings are divided into acoustically similar regions and classified into basic audio types such as speech, music or silence. Audio features used in this project include Mel Frequency Cepstral Coefficients (MFCC), Zero Crossing Rate and Short Term Energy (STE). These features were extracted from audio files that were stored in a WAV format. Possible use of features, which are extracted directly from MPEG audio files, is also considered. Statistical based methods are used to segment and classify audio signals using these features. The classification methods used include the General Mixture Model (GMM) and the k- Nearest Neighbour (k-NN) algorithms. It is shown that the system implemented achieves an accuracy rate of more than 95 for discrete audio classification.-This project describes the work done on the development of an audio segmentation and classification system. Many existing works on audio classification deal with the problem of classifying known homogeneous audio segments. In this work, audio recordings are divided into acoustically similar regions and classified into basic audio types such as speech, music or silence. Audio features used in this project include Mel Frequency Cepstral Coefficients (MFCC), Zero Crossing Rate and Short Term Energy (STE). These features were extracted from audio files that were stored in a WAV format. Possible use of features, which are extracted directly from MPEG audio files, is also considered. Statistical based methods are used to segment and classify audio signals using these features. The classification methods used include the General Mixture Model (GMM) and the k- Nearest Neighbour (k-NN) algorithms. It is shown that the system implemented achieves an accuracy rate of more than 95 for discrete audio classification.
(系统自动生成,下载前可以参看下载内容)

下载文件列表

imm3851.pdf

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org