文件名称:HUFMM
介绍说明--下载内容均来自于网络,请自行研究使用
哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的带权路长度记为WPL=(W1*L1+W2*L2+W3*L3+…+Wn*Ln),N个权值Wi(i=1,2,…n)构成一棵N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,…n)。可以证明哈夫曼树WPL是最小的。-Huffman tree is also called the optimal binary tree is a weighted shortest path length binary tree. The so-called weighted path length tree is the tree of all the weights of leaf nodes to root node multiplied by the diameter of its length (if the root node is 0 level, leaf nodes to root node of the path length of leaf node layer). Weighted path length tree recorded as WPL = (W1* L1+ W2* L2+ W3* L3+ ...+ Wn* Ln), N a weight Wi (i = 1,2, ... n) constitute an N-lobe node binary tree, the corresponding leaf nodes of the path length Li (i = 1,2, ... n). WPL Huffman tree can be shown is the smallest.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
HUFMM.doc