文件名称:ASM_version1b
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 9.72mb
- 下载次数:
- 0次
- 提 供 者:
- 谢*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
ASM是由Cootes和泰勒推出的多分辨率方法的一个例子。
基本思想:
在ASM模型训练,训练从手工绘制的图像轮廓。发现的ASM模型在训练使用主成分分析(PCA),使该模型自动识别数据的主要变化是,如果可能的轮廓/好的对象的轮廓。还包含了ASM模型的协方差矩阵描述行垂直纹理口岸时,在正确的位置。
-Descr iption This is an example of the basic Active Shape Model (ASM) as introduced by Cootes and Taylor, with multi-resolution approach.
Basic idea:
The ASM model is trained from manually drawn contours in training images. The ASM model finds the main variations in the training data using Principal Component Analysis (PCA), which enables the model to automatically recognize if a contour is a possible/good object contour. Also the ASM models contains covariance matrices describing the texture of the lines perpendicular to the control points when in the correct positions.
After creating the ASM model, an initial contour is deformed by finding the best texture match for the control points. This is an iterative process, in which the movement of the control points is limited by what the ASM model recognizes from the training data as a "normal" object contour.
Literature:
- Ginneken B. et al. "Active Shape Model Segmentation with Optimal Features", IEEE Transactions on Medical I
基本思想:
在ASM模型训练,训练从手工绘制的图像轮廓。发现的ASM模型在训练使用主成分分析(PCA),使该模型自动识别数据的主要变化是,如果可能的轮廓/好的对象的轮廓。还包含了ASM模型的协方差矩阵描述行垂直纹理口岸时,在正确的位置。
-Descr iption This is an example of the basic Active Shape Model (ASM) as introduced by Cootes and Taylor, with multi-resolution approach.
Basic idea:
The ASM model is trained from manually drawn contours in training images. The ASM model finds the main variations in the training data using Principal Component Analysis (PCA), which enables the model to automatically recognize if a contour is a possible/good object contour. Also the ASM models contains covariance matrices describing the texture of the lines perpendicular to the control points when in the correct positions.
After creating the ASM model, an initial contour is deformed by finding the best texture match for the control points. This is an iterative process, in which the movement of the control points is limited by what the ASM model recognizes from the training data as a "normal" object contour.
Literature:
- Ginneken B. et al. "Active Shape Model Segmentation with Optimal Features", IEEE Transactions on Medical I
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ASM_example.m
ApplyModel.m
Fotos
.....\test001.jpg
.....\train001.jpg
.....\train001.mat
.....\train002.jpg
.....\train002.mat
.....\train003.jpg
.....\train003.mat
.....\train004.jpg
.....\train004.mat
.....\train005.jpg
.....\train005.mat
.....\train006.jpg
.....\train006.mat
.....\train007.jpg
.....\train007.mat
.....\train008.jpg
.....\train008.mat
.....\train009.jpg
.....\train009.mat
.....\train010.jpg
.....\train010.mat
Functions
.........\align_data.m
.........\align_data_inverse.m
.........\DrawContourGui.fig
.........\DrawContourGui.m
.........\GetContourNormals.m
.........\getProfileAndDerivatives.m
.........\linspace_multi.m
.........\LoadDataSetNiceContour.m
.........\PCA.m
MakeAppearanceModel.m
MakeShapeModel.m
license.txt
ApplyModel.m
Fotos
.....\test001.jpg
.....\train001.jpg
.....\train001.mat
.....\train002.jpg
.....\train002.mat
.....\train003.jpg
.....\train003.mat
.....\train004.jpg
.....\train004.mat
.....\train005.jpg
.....\train005.mat
.....\train006.jpg
.....\train006.mat
.....\train007.jpg
.....\train007.mat
.....\train008.jpg
.....\train008.mat
.....\train009.jpg
.....\train009.mat
.....\train010.jpg
.....\train010.mat
Functions
.........\align_data.m
.........\align_data_inverse.m
.........\DrawContourGui.fig
.........\DrawContourGui.m
.........\GetContourNormals.m
.........\getProfileAndDerivatives.m
.........\linspace_multi.m
.........\LoadDataSetNiceContour.m
.........\PCA.m
MakeAppearanceModel.m
MakeShapeModel.m
license.txt