文件名称:TimeSeriesPredictionUsingSupportVectorRegressionNe
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [PDF]
- 上传时间:
- 2012-11-26
- 文件大小:
- 309kb
- 下载次数:
- 0次
- 提 供 者:
- 1*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR—NN)。SVR—NN 用支持向量回归(SVR)方法获得网络的初始结构和权值, 白适应地生
成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点疹教和权 主。 SVR—NN有很
好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的“过拟合,’现象。将SVR—NN
应用到时间序列预测上。结果表明,SVR.NN预测模型能精确地预测混沌时间序列,具有很好的
理论和应用价值。-Abstract:To select the‘best’structure of the neural networks and enhance the generalization ability of models.a support
vector regression neural networks fSVR-NN)was proposed.Firstly,support vector regression approach was applied to
determine initial structure and initial weights of SVR.NN SO that the number of hidden layer nodes can be constructed
adaptively based on support vectors.Furthermore,an annealing robust learning algorithm was further presented to fine
tune the hidden node parameters and weights of SVR一ⅣM The adaptive SVR.NN has faSt convergence speed and robust
capability.and it can also suppress the ‘orerfitting’phenomena when the train data ncludes outliers.The adaptive
SVR.NN was then applied to time series prediction.Experimental results show that the adaptive SVR.ⅣⅣ can accurately
predict chaotic time series,and it iS valuable in both theory and application aspects.
成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点疹教和权 主。 SVR—NN有很
好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的“过拟合,’现象。将SVR—NN
应用到时间序列预测上。结果表明,SVR.NN预测模型能精确地预测混沌时间序列,具有很好的
理论和应用价值。-Abstract:To select the‘best’structure of the neural networks and enhance the generalization ability of models.a support
vector regression neural networks fSVR-NN)was proposed.Firstly,support vector regression approach was applied to
determine initial structure and initial weights of SVR.NN SO that the number of hidden layer nodes can be constructed
adaptively based on support vectors.Furthermore,an annealing robust learning algorithm was further presented to fine
tune the hidden node parameters and weights of SVR一ⅣM The adaptive SVR.NN has faSt convergence speed and robust
capability.and it can also suppress the ‘orerfitting’phenomena when the train data ncludes outliers.The adaptive
SVR.NN was then applied to time series prediction.Experimental results show that the adaptive SVR.ⅣⅣ can accurately
predict chaotic time series,and it iS valuable in both theory and application aspects.
相关搜索: SVR
time
series
prediction
adaptive
prediction
in
matlab
预测模型
混沌
预测
回归
交叉
neural
networks
prediction
svr
time
adaptive
svr
预测
matlab
time
series
prediction
adaptive
prediction
in
matlab
预测模型
混沌
预测
回归
交叉
neural
networks
prediction
svr
time
adaptive
svr
预测
matlab
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于支持向量回归神经网络的时间序列预测.PDF