文件名称:GTPSO
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [PDF]
- 上传时间:
- 2012-11-26
- 文件大小:
- 218kb
- 下载次数:
- 0次
- 提 供 者:
- z***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
提出一种改进的粒子群优化算法———基于全局劣汰策略的混合粒子群优化算法(GTPSO) 。GTPSO在
保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性。数值计
算结果表明,对于高维(维数≥10)复杂非凸多峰函数的数值优化问题, GTPSO算法的计算结果均优于GuoA算
法和粒子群优化算法。-An improved particle swarm optimization algorithm--- poor overall survival strategy based on a mixture of particle swarm optimization (GTPSO). GTPSO while maintaining fast convergence PSO algorithm based on the algorithm to Guo Tao (GuoA) optimization of the mechanism in place to ensure the diversity of the population of the tenacity and algorithms. The numerical results show that for high-dimensional (dimension ≥ 10) the complexity of multi-peak function non-convex numerical optimization problems, GTPSO algorithm results are superior to GuoA algorithms and particle swarm optimization algorithm.
保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性。数值计
算结果表明,对于高维(维数≥10)复杂非凸多峰函数的数值优化问题, GTPSO算法的计算结果均优于GuoA算
法和粒子群优化算法。-An improved particle swarm optimization algorithm--- poor overall survival strategy based on a mixture of particle swarm optimization (GTPSO). GTPSO while maintaining fast convergence PSO algorithm based on the algorithm to Guo Tao (GuoA) optimization of the mechanism in place to ensure the diversity of the population of the tenacity and algorithms. The numerical results show that for high-dimensional (dimension ≥ 10) the complexity of multi-peak function non-convex numerical optimization problems, GTPSO algorithm results are superior to GuoA algorithms and particle swarm optimization algorithm.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
一种基于全局劣汰策略的混合粒子群优化算法.pdf