文件名称:FaceDetection_Based_on_a_New_Nonlinear_Color_Space
介绍说明--下载内容均来自于网络,请自行研究使用
提出一种新的非线性变换的彩色空间 ″″, 利用次高斯概率分布函数拟合皮肤色度信息, 得到候选区
YC C
r b
域。为了排除候选区域中的非人脸, 首先根据均值和方差信息分割出候选区域中的纹理特征信息, 再通过多尺度
)
(
信息定位眼睛, 然后根据人脸特征的几
形态边缘检测算子检测候选区域的边缘, 利用 边缘方向
PCA PCAED
( )
何形状信息定位其他特征 鼻、嘴 , 通过这些几何特征信息对肤色分割得到的候选区域进行验证, 最终得到正确
的人脸区域。利用3 个实验数据集测试该算法, 并与其它相应的算法相比较, 提出的非线性彩色空间对于肤色分
割具有很好的效果, 且对光照和姿态具有良好的不变性。另外, 利用 信息和几何特征信息检测人脸特征
PCAED
具有很高的定位精度, 定位检测率优于其他方法。实验结果表明, 该算法具有定位准确率高, 漏检率和误检率低
等特点。-
A novel approach for skin segmentation and facial feature extraction is proposed
The proposed skin segmentation is a method for integrating the chrominance components of
″″ . ″″
r b r b
nonlinear YC C color model The chrominance components of nonlinear YC C color space
,
are modeled using a subgaussian probability density function and then the face skin is seg
. ,
mented based on this function In order to authenticate the face candidate regions firstly tex
ture information in face candidate regions is segmented using mean and variance of luminance
, . ,
information and then the eye is located by the PCA edge direction information Finally the
, ,
others features such as nose and mouth also are detected using the geometrical shape infor
. 2 ,
mation As all the above mentioned techniques are simple and efficient the skin segmentation
.
based on nonlinear color spacemethod has the invariability of lighting and pose In the experi
, .
ments themethod has been successfull
YC C
r b
域。为了排除候选区域中的非人脸, 首先根据均值和方差信息分割出候选区域中的纹理特征信息, 再通过多尺度
)
(
信息定位眼睛, 然后根据人脸特征的几
形态边缘检测算子检测候选区域的边缘, 利用 边缘方向
PCA PCAED
( )
何形状信息定位其他特征 鼻、嘴 , 通过这些几何特征信息对肤色分割得到的候选区域进行验证, 最终得到正确
的人脸区域。利用3 个实验数据集测试该算法, 并与其它相应的算法相比较, 提出的非线性彩色空间对于肤色分
割具有很好的效果, 且对光照和姿态具有良好的不变性。另外, 利用 信息和几何特征信息检测人脸特征
PCAED
具有很高的定位精度, 定位检测率优于其他方法。实验结果表明, 该算法具有定位准确率高, 漏检率和误检率低
等特点。-
A novel approach for skin segmentation and facial feature extraction is proposed
The proposed skin segmentation is a method for integrating the chrominance components of
″″ . ″″
r b r b
nonlinear YC C color model The chrominance components of nonlinear YC C color space
,
are modeled using a subgaussian probability density function and then the face skin is seg
. ,
mented based on this function In order to authenticate the face candidate regions firstly tex
ture information in face candidate regions is segmented using mean and variance of luminance
, . ,
information and then the eye is located by the PCA edge direction information Finally the
, ,
others features such as nose and mouth also are detected using the geometrical shape infor
. 2 ,
mation As all the above mentioned techniques are simple and efficient the skin segmentation
.
based on nonlinear color spacemethod has the invariability of lighting and pose In the experi
, .
ments themethod has been successfull
相关搜索: 纹理特征
人脸
定位
皮肤
纹理
检测
Pca
Facial
Features
Segmentation
人脸
PCA
shape
Feature
based
Approach
pose
face
肤色
人脸
人脸
定位
皮肤
纹理
检测
Pca
Facial
Features
Segmentation
人脸
PCA
shape
Feature
based
Approach
pose
face
肤色
人脸
(系统自动生成,下载前可以参看下载内容)
下载文件列表
FaceDetection_Based_on_a_New_Nonlinear_Color_Space.pdf