搜索资源列表
xiaobozengqiang
- 适合初学小波的同志,小波图像增强原理底层。严格高低频分解重构,没有使用小波工具库。
xiaobozengqiang
- 首先通过多分辨率分解法提取高频边缘,然后分别对每层的高频边缘进行非线性插值得到新的高频边缘,接着对高频边缘进行高通滤波得到等强后的高频边缘,最后对增强后的高频边缘进行修正。再在对增强的图像进行对比度拉伸,从而达到增强的目的!
xiaobozengqiang
- 适合初学小波的同志,小波图像增强原理底层。严格高低频分解重构,没有使用小波工具库。-Suitable for beginners wavelet comrades, the underlying principle of wavelet image enhancement. Strict high-low-frequency decomposition of reconstruction, did not use the wavelet
xiaobozengqiang
- 首先通过多分辨率分解法提取高频边缘,然后分别对每层的高频边缘进行非线性插值得到新的高频边缘,接着对高频边缘进行高通滤波得到等强后的高频边缘,最后对增强后的高频边缘进行修正。再在对增强的图像进行对比度拉伸,从而达到增强的目的!-First of all, through the extraction of multi-resolution decomposition of high-frequency edge, and then wer
xiaobozengqiang
- 基于小波变换的图像增强,希望能对大家有所帮助!-Based on Wavelet Transform image enhancement, hoping to help all of you!
xiaobozengqiang
- 基于haar小波的图像增强,与传统的图像增强算子相比较,效果更好。-Haar wavelet-based image enhancement, with the traditional image enhancement operator compared better.
xiaobozengqiang
- 基于小波变换的图像增强,包含整个处理过程-Image enhancement based on wavelet transform, including the whole process
xiaobozengqiang
- 通过小波变换技术,图像增强,而且,通过钝化图像以后,小波增强的效果更好-photo big
xiaobozengqiang
- 弱信号增强处理是探地雷达数据处理中的一个重要环节,而且是探地雷达数据处理难以解决的问题。弱信号在两 方面使其不易于直接从探测剖面上识别出来:一是本身信号强度小且受到随机噪声的干扰;二是存在浅部强信号的明显反 差,视图上难以识别。本文根据小波变换的特征提出一种信号增强方法,即多尺度小波变换信号增强法。-Ground-penetrating radar based on wavelet transform weak signal e
xiaobozengqiang
- 基于haar小波的图像增强,与传统的图像增强算子相比较,效果更好。-Haar wavelet-based image enhancement, with the traditional image enhancement operator compared better.
xiaobozengqiang
- 基于haar小波的图像增强,与传统的图像增强算子相比较,效果更好。-Haar wavelet-based image enhancement, with the traditional image enhancement operator compared better.