搜索资源列表
X_LMSmatlab
- 基于lms算法的X-LMS算法,比较适合实际模型
C6711_predict
- 针对TI公司的DSK6711所发展的适应性调适范例,包含完整LMS功能,CCS2.x版,采用C语言完整编译-against TI's DSK6711 developed adaptive adjustment example, LMS includes functional integrity, CCS2.x version, complete with C language compiler
X_LMSmatlab
- 基于lms算法的X-LMS算法,比较适合实际模型-LMS algorithm based on X-LMS algorithm, more suitable for the actual model
NLMS
- 若不希望用与估计输入信号矢量有关的相关矩阵来加快LMS算法的收敛速度,那么可用变步长方法来缩短其自适应收敛过程,其中一个主要的方法是归一化LMS算法(NLMS算法),变步长 的更新公式可写成 W(n+1)=w(n)+ e(n)x(n) =w(n)+ (3.1) 式中, = e(n)x(n)表示滤波权矢量迭代更新的调整量。为了达到快速收敛的目的,必须合适的选择变步长 的值,一个可能策略是尽可能多地减少瞬时平方误差,即用瞬时平方
fxlms
- %% Active Noise Control Using a Filtered-X LMS FIR Adaptive Filter % This demonstration illustrates the application of adaptive filters to the % attenuation of acoustic noise via active noise control. - Active Nois
adaptdemos
- Active Noise Control Using a Filtered-X LMS FIR Adaptive Filter.
da2
- FIR_A=[1 1 2] FIR_B=[2 1 1] function [w_out mse_out ref_out] = LMS(FIR_A,FIR_B,1,wave=square) [w mse ref res iter] = LMS(FIR_A,FIR_B,L,wave) LMS filter to solve the system identification problem represented b
2-LMS-equalizer
- 假设每个延时单元延时10ms.被传输的基带信号x(t)是一个0,1交替变换的矩形二进制脉冲序列,脉宽为10ms,并假设x(t)通过一个稳定的散射信道后才到达均衡器,成为2径信号,这两路信号幅度相等 ,相隔15ms。用MATLAB实现一个2级LMS均衡器-equalizer
txt
- 这写都是我在做-x LMS噪声除噪中的一些源代码,最后的代码也有,请大家自己看-It was all my doing-x LMS noise than noise in some of the source code, the final code also, please look at their own
LMS_RLS_sim
- 功能描述:测试LMS与RLS算法,比较两种算法的收敛特性 文件名:LMS_RLS_sim.m 测试用例: x(n)+a1*x(n-1)+a2*x(n-2)=e(n),a1=-1.6,a2=0.81,e(n)为高斯白噪声 文件输出:系数a1的值 调用函数:function [A] = LMS_Algo(M,N,mu,xn) 被调用:无 作者:mingcheng 编写时间:200
x
- This derivation of the normalised least mean square algorithm is based on Farhang- Boroujeny 1999, pp.172-175, and Diniz 1997, pp 150-3. To derive the NLMS algorithm we consider the standard LMS recursion, for which
LMS-RLSAdaptiveFilter
- 数字信号处理,LMS和RLS实例:给定正弦信号s(n),现在我们获得得是受影响的数据x(n)=s(n)+v(n) , v(n)为方差1.25的告示白噪声信号,请设计一个滤波器,使其输出与s(n)的均方误差最小,并给出用LMS和RLS算法的自适应求解方法的MATLAB仿真。-Digital signal processing, LMS and RLS instance: Given a sinusoidal signal s (n), n
lms
- 最小均方算法lms在波束形成中的应用 LMS算法步骤: 1,、设置变量和参量: X(n)为输入向量,或称为训练样本 W(n)为权值向量 b(n)为偏差 d(n)为期望输出 y(n)为实际输出 η为学习速率 n为迭代次数 2、初始化,赋给w(0)各一个较小的随机非零值,令n=0 3、对于一组输入样本x(n)和对应的期望输出d,计算 e(n)=d(n)-X^T(n)W(n) W(n+1)=W
LMS
- 1,、设置变量和参量: X(n)为输入向量,或称为训练样本 W(n)为权值向量 e(n)为偏差 d(n)为期望输出 y(n)为实际输出 η为学习速率 n为迭代次数 2、初始化,赋给w(0)各一个较小的随机非零值,令n=0 3、对于一组输入样本x(n)和对应的期望输出d,计算 e(n)=d(n)-X^T(n)W(n) W(n+1)=W(n)+ηX(n)
LMS
- Simple function to adjust filter coefficients using the LMS algorithm adjusts filter coefficients, b, to provide the best match between the input, x(n), and a desired waveform, d(n),both waveforms must be the same length
ANC
- 自适应滤波LMS算法实现有源噪声消除:Mtalab程序;FLMS算法-Application Program to Test Active Noise Controla 32-tap adaptive FIR filter is used to produce an anti-noise to cancel the primary noise. The adaptive algorithms used here are the filt
x-lms-1
- 使用matlab编写的一种优化的lms算法 xlms算法,比lms算法更精准-Lms algorithm using an optimized algorithm matlab prepared xlms more accurate than lms algorithm
LMS
- 用MATLAB编写的lms算法,设置变量和参量,赋,对于一组输入样本x(n)和对应的期望输出d-MATLAB prepared by the LMS algorithm, set variables and parameters, Fu, for a set of input samples x (n) and the corresponding expected output D
PERFORMANCE ANALYSIS OF
- 基于 FXLMS 算法的窄带主动噪声控制系统性能分析研究,统计最小均方(LMS)理论为分析基础,对基于滤波 - X 最小均方(Filtered - X LMS: FXLMS)算法的窄带 ANC 系统展开详尽深入的性能分析(Adaptive Active Control System of Vehicle Noise Design)
lms
- LMS最小二乘法,拟合曲线的基本原理:成对等精度地测得一组数据x,试找出一条最佳的拟合曲线。(LMS Least Squares, the basic principle of fitting the curve: pairs of precision to measure a set of data x, try to find a best fit curve.)