搜索资源列表
DUO-CHI-DU
- 许多重要的机械系统平稳运行机制下(负载),但许多观察到的症状在某种程度上取决于条件在系统负荷和/或环境条件。因此状态监测的一个了这类系统应该有一些可能的症状观察到一个标准的荷载工况。-Many critical mechanical systems operate in a non-stationary regime (load ), and many observed symptoms of its condition depen
demo_ASIFT_src
- 考虑了放射变换因素,比sift有更好的效果,但是速度由于增加了旋转的考虑会变慢很多!-A fully affine invariant image comparison method, Affine-SIFT (ASIFT) is introduced. While SIFT is fully invariant with respect to only four parameters namely zoom, rotation and
Intelligent-Fault-Diagnosis-
- Intelligent Fault Diagnosis and Prognosis for Engineering Systems
9Multiwavelet-Grading-of-Pathological
- Histological grading of pathological images is used to determine level of malignancy of cancerous tissues. This is a very important task in prostate cancer prognosis, since it is used for treatment planning. If inf
10Automatic-classification-for-pathological
- Accurate grading for prostatic carcinoma in pathological images is important to prognosis and treatment planning. Since human grading is always time-consuming and subjective, this paper presents a computer-aided sy
complete1
- This paper describe the features extraction algorithm for electrocardiogram (ECG) signal using Huang Hilbert Transform and Wavelet Transform. ECG signal for an individual human being is different due to unique heart stru
A58g
- This paper describe the features extraction algorithm for electrocardiogram (ECG) signal using Huang Hilbert Transform and Wavelet Transform. ECG signal for an individual human being is different due to unique heart stru
PrognosticsAlgorithmLibrary-master
- NASA公布的卡尔曼滤波的预测算法,包括提升卡尔曼滤波、扩展卡尔曼滤波等,包括几个案例(Prognosis algorithm library provided by NASA)
classifier_D
- 使用SVM分类器来预测乳腺癌病人的预后(特征选择;分类器构建),评价模型时使用无被交叉验证,性能评价指标包括准确率,AUC,灵敏度,特异度。学会最基本的机器学习方法。可查看分发给大家的代码,以后遇到类似的问题,可用相似的思路和代码。(The SVM classifier was used to predict the prognosis of breast cancer patients (feature selection; clas
best_linear_regression_equation
- 病人有四个指标:X1:凝血值;X2:预后指数(与年龄相关);X3:酶化验值;X4肝功能化验值。54位肝病人术前数据与术后生存时间如表所示.病人生存时间的Box-Cox变换变量Z与X1,X2,X3,X4的线性回归模型是合理的,程序实现了如何选择最优回归方程。(Patients have four indexes: X1: coagulation value; x2: prognosis index (related to age); X3