搜索资源列表
遗传算法解TSP
- 实现用固定变异概率和自适应变异概率解tsp问题的比较,自适应式算法采用基于种群差异度的自适应算法,详见实验报告-achieve fixed mutation probability and Adaptive Solutions tsp mutation probability of comparison, Adaptive Algorithm-based differences in the populations adaptive a
matlog
- 物流分析工具包。Facility location: Continuous minisum facility location, alternate location-allocation (ALA) procedure, discrete uncapacitated facility location Vehicle routing: VRP, VRP with time windows, traveling salesman
cs2ct
- 在页面中实时转换简繁体,使您的网站适合所有的人群。-pages in real-time conversion Brief History, your site is suitable for all populations.
遗传算法实现旅行商问题
- 本算法中采取了种群规模为100,同时采用轮盘赌来获取种群。开始使用随机的方法得到初始的种群-the algorithm adopted a population size of 100, using roulette to access populations. Using the stochastic method initial Stocks
遗传算法实现旅行商问题
- 本算法中采取了种群规模为100,同时采用轮盘赌来获取种群。开始使用随机的方法得到初始的种群-the algorithm adopted a population size of 100, using roulette to access populations. Using the stochastic method initial Stocks
遗传算法解TSP
- 实现用固定变异概率和自适应变异概率解tsp问题的比较,自适应式算法采用基于种群差异度的自适应算法,详见实验报告-achieve fixed mutation probability and Adaptive Solutions tsp mutation probability of comparison, Adaptive Algorithm-based differences in the populations adaptive a
matlog
- 物流分析工具包。Facility location: Continuous minisum facility location, alternate location-allocation (ALA) procedure, discrete uncapacitated facility location Vehicle routing: VRP, VRP with time windows, traveling salesman
cs2ct
- 在页面中实时转换简繁体,使您的网站适合所有的人群。-pages in real-time conversion Brief History, your site is suitable for all populations.
gafmax
- % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % Best
SGA2[1].0
- GA(Simple Genetic Algorithm)是一种强大的智能多变量优化算法,它模仿种群繁殖规律来进行优化。 本SGA可以优化变量,求最小值,最大值(当把函数倒数也就求最小值啦) 并且支持浮点编码,grey编码,二进制编码;轮赌法选择,锦标赛选择;单点交叉,均布交叉,浮点交叉;单点变异,浮点变异;-GA (Simple Genetic Algorithm) is a powerful, intelligent mult
geneticagrithom
- 本遗传算法是保留大量状态种群的随机爬山搜索算法,新的状态通过变异和杂交产生,杂交把来自种群的状态对结合在一起。-The genetic algorithm is to retain a large number of the state of stocks climbing random search algorithm, the new state generated through mutation and hybrids, hyb
ga
- 实现了一个简单的花朵进化的模拟过程。 花朵的种群数量是10,共进化了50代。 通过运行程序,你会发现通过不断的进化,种群的总的适应环境的能力在逐步提高(fitness的值下降)。 -The realization of a simple simulation of the evolution of flowers. Flower populations of 10, a total of 50 on behalf of
ga
- 遗传算法(Genetic Algorithm,GA)是一种抽象于生物进化过程的基于自然选择和生物遗传机制的优化技术. 遗传算法的基本原理 在遗传算法的执行过程中,每一代有许多不同的种群个体(染色体 )同时存在。这些染色体中哪个保留(生存)、哪个淘汰(死亡),是根据 它们对环境的适应能力来决定的,适应性强的有更多的机会保留下来 。适应性强弱是通过计算适应性函数f(x)的值来判别的,这个值称为适应值。适应值函数f(x)的构成
Cmonihuaduojinhua
- 实现了一个简单的花朵进化的模拟过程。 花朵的种群数量是10,共进化了50代。 -The realization of a simple simulation of the evolution of flowers. Flower populations is 10, a total of 50 on behalf of evolution.
penna_dead
- PEnna生物模型中的死亡和繁殖规律,运用此规律可以模拟生物种群的数量。-Penna biological model of death and reproduction of the law, the application of this law can simulate the number of biological populations.
Optimizers
- 一系列好用的用户友好的启发式优化算法,包括非自适应算法,基于模拟退火算法的种群算法,基本遗传算法,差分进化算法以及粒子群优化算法。此外,也包括神圣算法,它利用了所有这些优化算子,虽然有时交换种群之间的不同算法。-A nice set of user-friendly heuristic optimizers. Included are a non-adaptive, population based Simulated Annealin
M_GA
- 用4个种群来优化函数,每次取三个种群里面的最佳放入第四种群,经过反复迭代后取得函数的最佳值-4 used to optimize the function of populations, each from three of the best stocks inside Add the fourth population, after repeated iterations of the optimal value function
gui_antminer1.2.1
- Short descr iption: GUI Ant-Miner is a tool for extracting classification rules from data. It is an updated version of a data mining algorithm called Ant-Miner (Ant Colony-based Data Miner), which was proposed in 2002 by
genetic_algorithm
- 遗传算法入门实例一:PID参数的优化[v1.0] 本文件夹包含: 图片IMG_0084 和IMG_0086为实验照片 IMG_0084为初始种群中某个体的PID调整效果 IMG_0086为进化了N(到底多少代我也没有去数)代之后的PID调整效果 文件GA为正文 源码\GA\ 为实验代码,WINAVR20060421+AVR Studio 4.12-Introduction example of a genetic a
Chaotic-populations-in-genetic-algorithms
- Chaotic populations in genetic algorithms