搜索资源列表
pallard_p
- 用vc编写的实现密码学中Pollard p离散对数算法的小程序。-vc prepared with the realization of cryptography which Pollard p discrete logarithm algorithm for small procedures.
数论
- 64位以内Rabin-Miller 强伪素数测试和Pollard rho 因数分解算法的实现-64 within Rabin-Miller-puppet prime testing and Pollard rho factorization algorithm implementation
数论
- 64位以内Rabin-Miller 强伪素数测试和Pollard rho 因数分解算法的实现-64 within Rabin-Miller-puppet prime testing and Pollard rho factorization algorithm implementation
pallard_p
- 用vc编写的实现密码学中Pollard p离散对数算法的小程序。-vc prepared with the realization of cryptography which Pollard p discrete logarithm algorithm for small procedures.
RSA
- RSA公钥加密的基本实现 bmp灰度图片加解密操作包括 RSA 的加减密算法; 素数检测算法;RSA 密钥生成算法; 应用该 RSA 密码体制加、解密; BMP 灰度图的算法; Pollard p-1 算法 ; Pollard r 算法 ; -RSA public key encryption to achieve the basic gray-scale picture bmp including RSA encryption and
pollard
- pollard算法,用于求整数的一个因子,时间复杂度为O(n^1/4)-Pollard algorithm, used to seek an integer factor, the time complexity is O (n ^ 1/4)
Pollard
- Pollard algorithm for factorization
BM
- The Berlekamp-Massey algorithm is an efficient algorithm for determining the linear complexity of a finite binary sequence sn of length n. The algorithm takes n iterations, with the Nth iteration computing the linear com
lisan
- Pollard Rho离散对数 需要gmp的函数库支持-Pollard Rho discrete logarithm
pollard-rho__miller-rabin
- pollard_rho 产生某数的随机因子 && miller_rabin 素数测试 acm数论算法 poj1811 ac代码-pollard_rho & miller_rabin the num_theory algorithm of ACM the accept source code of poj1811
pollard
- Pollard p-1算法实现 Pollard 方法由Pollard于1974年提出,其基本想法是这样的:设素数,由Fermat小定理,又有,因此就可能是的一个非平凡因子。当然,问题在于我们并不知道是多少。一个合理的假设是的因子都很小,比如说,所有素因子都包含在因子基中,我们来尝试着找到一个能够“覆盖”,即是说,从而,因此我们可以转而求来获得所要的非平凡因子。例如设素因子上限为,便可以简单的取或是最小公倍数.-Pollard p-
miller
- 64位以内Rabin-Miller 强伪素数测试和Pollard rho 因数分解 -64 within the Rabin-Miller strong pseudo-primes test and Pollard rho factorization
PollardRho.java
- pollard-rho java solution
pollard rho 攻击
- 使用SSSA约化自同构算法解决椭圆曲线离散对数问题(Use of from about SSSA reconstruction algorithm solving the elliptic curve discrete logarithm problem with)