搜索资源列表
2dpca
- 一种新的pca方法,2dpca,有中科院的ppt及相关资料-A kind of new pca method , 2dpca, there are ppt of Chinese Academy of Sciences and relevant materials
Is_Two_dimensionalpCA
- 关于2dpca是否比传统的pca强,这一两年来,争论比较大,这篇国内的论文对这个问题提出了自己的看法。觉得不错,推荐!-2dpca than on the traditional pca strong in the last couple of years, more controversial, This domestic paper on the issue put forward their views. Think it'
2dpca
- 基于二维PCA对人脸进行识别,对图像有很好的降维作用,且识别率比pca好-PCA based on two-dimensional human face recognition, the image is very good landing peacekeeping role, and the recognition rate better than pca
2dpca
- 该文介绍了二维主元分析在人脸识别中的应用研究。-This paper introduces the two-dimensional PCA in face recognition in applied research.
2DPCA
- 二维PCA-人脸识别--源程序.m个人认为比较好的,毕业设计用到啊-Two-dimensional PCA-face recognition- the source code. M personally think that a better graduation design uses ah
2DPCA
- 2DPCA新的降维方法,是PCA的改进,新,很值得一看!-2DPCA new dimension reduction method is PCA improvements, the new, it is worth a visit!
2DPCA
- 2DPCA算法,在对话框上可以选择不同的维数进行人脸图像重构,简单实用。-2DPCA algorithm, in the dialog box can choose a different dimension to facial image reconstruction, simple and practical.
2dpca
- Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition
BasedonprincipalcomponentanalysisoftheFaceRecognit
- 在特征提取阶段,研究了PCA, 2DPCA, (2D) 2PCA, DiagPCA, DiagPCA-F-2DPCA等多 种方法。不同于基于图象向量的PCA特征提取,由于2DPCA, (2D) ZPCA, DiagPCA和 DiagPCA-I-2DPCA的特征提取都直接基于图象矩阵,计算量小,所以特征的提取速度明 显高于PCA方法。-In the feature extraction stage, the study
2Dpca
- 这是一个非常经典的特征提取算法,matlab写的2DPCA源码-This is a very classical feature extraction algorithm 2DPCA, matlab source code
2DPCA
- 2DPCA新的降维方法,是PCA的改进,新,很值得一看 -2DPCA a new dimension reduction method is PCA improvements, the new, it is worth a visit
2(2dpca)
- 两维pca变换,把图像进行二维的主成分分析得到降维向量,然后用此向量进行分类-2Dpca transfrom
2dpca
- 利用2dPCA算法实现的人脸识别程序,值得一看,效果比较好 -2dPCA algorithm using face recognition program, worth a visit, the effect is better
Face_Recognition_Based_on_PCA_Comparative_Study.ra
- 主成成份分析( PCA) 方法是人脸识别技术中常用的一种一维特征抽取方法。传统PCA 方法用于人脸识别常常面临图像维数高,直接计算量的问题。为了解决这2 个问题,人们对PCA 进行了改进,提出并实现了多种基于PCA 的人脸识别。对3 种基于PCA 的人脸识别方法做了理论上的研究和实验上的性能比较。实验结果表明PCA + 2DPCA 是其中综合效果最好的一种方法。-Principal component analysis into (PC
2DPCA
- 二维pca算法 由南理工的杨健老师提出的-Two-dimensional pca algorithm of Yang Jian, a teacher from the proposed Huanan
2DPCA
- 二维主成分分析方法在人脸识别中的研究,MATLAB开发环境开发-Two-dimensional PCA methods for face recognition research, MATLAB development environment, development
TwoDPCADemo
- 二维主成分分析(2DPCA)的C++实现,可以用于实际工作和学习中-Two-dimensional PCA (2DPCA) of the C++ implementation can be used for practical work and learning
2dpca
- 一种改进的 pca 算法,2dpca用于识别图像。(a new technique coined two-dimensional principal component analysis (2DPCA) is developed for image representation)
PCA
- Matlab 平台使用2DPCA对二维图像数据进行降低图片的维度。提高图像处理速度。(The Matlab platform uses 2DPCA to reduce the dimension of the image data for two-dimensional image data. Improve the speed of image processing.)
PCA&2DPCA (1)
- pca和2dpca的MATLAB人脸识别。并且使用orl人脸数据库进行测试(PCA and 2DPCA's MATLAB face recognition. And use the ORL face database to test)