搜索资源列表
multifit
- 功能:离散试验数据点的多项式曲线拟合 调用格式:A=multifit(x,y,m) 其中:x: 试验数据点的x坐标向量 Y: 试验数据点的y坐标向量 m: 拟合多项式的次数 -Functions: discrete experimental data points, the polynomial curve fitting call format: A = multifit (x, y, m) where:
5
- Chebyshev 用切比雪夫多项式逼近已知函数 Legendre 用勒让德多项式逼近已知函数 Pade 用帕德形式的有理分式逼近已知函数 lmz 用列梅兹算法确定函数的最佳一致逼近多项式 ZJPF 求已知函数的最佳平方逼近多项式 FZZ 用傅立叶级数逼近已知的连续周期函数 DFF 离散周期数据点的傅立叶逼近 SmartBJ 用自适应分段线性法逼近已知函数 SmartBJ 用自适应样条逼近(第一类)已知函
multifit
- 各种函数逼近的拟合算法,包括各种拟合函数,里面有各种算法的完整实现-The fitting various function approximation algorithms, including a variety of fitting functions, which have a full implementation of the various algorithms
expression-functions
- 切比雪夫 用切比雪夫多项式逼近已知函数 勒让德 用勒让德多项式逼近已知函数 帕德 用帕德形式的有理分式逼近已知函数 lmz 用列梅兹算法确定函数的最佳一致逼近多项式 ZJPF 求已知函数的最佳平方逼近多项式 方舟子 用傅立叶级数逼近已知的连续周期函数 事实上的部队 离散周期数据点的傅立叶逼近 SmartBJ 用自适应分段线性法逼近已知函数 SmartBJ 用自适应样条逼近(第一类)已知函数 multi