搜索资源列表
LS_SVM最小二乘支持向量机Matlab源码
- 自编的最小二乘支持向量机Matlab代码,主要用于非线性回归
LS-SVMlab1.5bw.tar
- LS-SVMlab1.5bw可以实现各种模式分类,回归问题-LS-SVMlab1.5bw can realize all kinds of mode classification and the question of return.
LS-SVMlab1.5aw
- 最小二乘支持向量机MATLAB实现源代码,可以用于模式识别以及回归,DEMOCLASS是使用方法示例-least squares support vector machines MATLAB source code, can be used for pattern recognition and regression, DEMOCLASS example is the use of
MATLAB
- LS-svm用于回归分析-LS-svm regression analysis for DDDDDDDDDDDDDDDDDDDD
arima
- 在matlab的环境下实现了自回归移动平均模型(arima)-Matlab environment in the realization of the auto-regressive moving average model (arima)
LS-SVMlab1.5
- SVM 软件包,可以解决分类问题(包括C- SVC、n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM )等问题-SVM software package can solve the classification problems (including the C-SVC, n- SVC), regression (including e- SVR, n- SVR) as wel
LS-SVMlab1[1].5
- 基于支持向量机回归的LS-SVM的matlab源码-Based on Support Vector Machine LS-SVM regression in matlab source
LS-SVMlab15aw
- 这是一个很好的支持向量机的工具包,有回归、分类、寻优等功能。-This is a very good tool for support vector machine package, there is regression, classification, finding excellent features.
CorrectCarNoImageAndRegnize
- 一种车牌图像校正新方法 【摘要】因摄像机角度而造成的机动车牌图像倾斜会对其后继的字符分割与识别带来不利的影响。本文在分析了车牌倾斜模式的基础上,提出了一种基于最小二乘支持向量机(LS-SVM)的车牌图像倾斜校正新方法。通过LS-SVM线性回归算法求取坐标变换矩阵并对畸变图像进行旋转校正。主要方法:首先,将二值倾斜车牌图像中的像素转换为二维坐标样本,并构造图像数据集 再通过LS-SVM线性回归算法对该数据集进行回归,求取主要参数 最后
ls-svm(matlab)
- svm 回归聚类函数包课用于支持向量机回归于分类-svm regression clustering function package
lssvm
- 一个简单的lssvm程序,用与最小二乘的回归预测-A simple ls svm program, with the least-squares regression
LS-SVM
- 主要叙述在matlab环境下熟悉对svm的操作以及svm的主要特性包括分类和回归-The main narrative in the matlab environment familiar with the operation of the SVM and the main features include SVM classification and regression
LS-SVMLab-v1.7(R2006a-R2009a)
- matlab中的ls-svm工具包,是最小二乘支持向量机算法,可用于解决非线性的回归问题。-ls-svm tool in the Matlab package, least squares support vector machine algorithm can be used to solve nonlinear regression problems.
LSSVM
- 最小二乘支持向量机工具箱1.6版。含稳健回归和贝叶斯推理,功能强大。-LS-SVM Toolbox version 1.6. With robust regression and Bayesian inference, and powerful.
LS-SVM1
- 最小二乘支持向量机的工具箱程序,附可运行的SVM回归的例子,还有工具箱使用说明。-Least Squares Support Vector Machine Toolbox program, you can run the example attached SVM regression, as well as kit instructions.
Classification-and-regression
- 分类与回归。Matlab的工具箱是围绕一个快速LS-SVM训练和模拟算法。该相应的功能调用可以用于分类以及为函数估计。该功能plotlssvm显示模型的模拟结果,在训练的区域点。-The Matlab toolbox is built around a fast LS-SVM training and simulation algorithm. The corresponding function calls can be used
lssvm
- 最小二乘支持向量机回归,四个插入数据分别为训练输入、训练输出、测试输入、测试输出。工具包+程序(Least squares support vector regression (SVM), the four inserted data are training input, training output, test input and test output)
LSSVMlabv1_8_R2009b_R2011a
- 最小二乘支持向量机,功能(实现回归预测和分类)(least squares support vector machine)
LSSVM
- 最小二乘支持向量机,用于进行函数的回归分析(Least squares-Support Vector Machine,Used for regression analysis of functions)