搜索资源列表
Gauss-Legendre
- Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,
gauss-legendre
- 用gauss-legendre方法计算积分的近似值
勒让德-高斯求积法求磁感应强度
- 勒让德-高斯求积法求磁感应强度-Legendre- Gauss quadrature method for magnetic induction
坐标转换
- 提供C++完成高斯坐标与大地坐标转换源码,请指教-provide complete Gauss coordinate geodetic coordinates with the source code conversion, please enlighten
legendre_gauss
- 此程序包含求任意点高斯积分节点和对应的Gauss的求解系数(同时也编写了Lagrange插值公式)-for this procedure include arbitrary point Gaussian integral node and the corresponding Gauss coefficient of the solution (also prepared Lagrange interpolation formula)
Legendre
- Legendre正交多项式拟合,可对任意曲线进行拟合-Legendre polynomial fitting, right arbitrary curve fitting
GaussSinxy
- 利用高斯-勒让德多项式计算 sin(x+y)在矩形区域的积分-use Gauss- Legendre polynomials calculated sin (x y) in the rectangular region of Integral
Integral
- 数值分析 求积分算法源码,VC++,龙贝格求积算法,高斯-勒让德求积算法-Integral Algorithm for Numerical Analysis of source code, VC++, Romberg quadrature algorithm, Gauss- Legendre quadrature algorithm
Gauss-Legendre
- Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,-Gauss-Legendre using five-point Gauss-Legendre quadrature formula for calculating the definite integral,
gaussjifen
- 高斯(Gauss)求积公式,介绍了高斯公式的详细的算法。
gauss-legendre
- 用gauss-legendre方法计算积分的近似值-Gauss-legendre with integral approximation method
Legendre
- 基于legendre矩的尺度不变性matlab代码,压缩包解压时不能有密码。-Based on scale invariance legendre moments matlab code, when extracting compressed package should not have a password.
integrate(nu)
- This GUI can be used by entering nu at the MATLAB command prompt. The user can either select a function (f(x)) of their choice or a statistical distribution probability distribution function to plot over a user defined r
MATLAB
- to caluculate the legendre polynomials
CH6
- 6.5 计算一组积分的连分式法ffpqg.c 6.6 高振荡函数求积法fpart.c 6.7 勒让德-高斯求积法flrgs.c 6.8 拉盖尔-高斯求积法flgs.c 6.9 埃尔米特-高斯求积法fhmgs.c-6.5 calculate a set of integral continued fractions method ffpqg.c 6.6 high-vibration function, quadrature
Gauss
- 复化的Gauss-legendre公式,自己写的,还有推导过程-Re-oriented Gauss-legendre formula, wrote it myself, as well as derivation
Gauss_Legendre_Quadrature
- os : window vista 32bit compiler : visual c++ 6.0 Gauss-Legendre Quadrature nPoint = 2,3,4,....,16
Gaussian
- The numerical integration methods described so far are based on a rather simple choice of evaluation points for the function f(x). They are particularly suited for regularly tabulated data, such as one might measure in
legendreP
- legendre function solution in matlab
Gauss-Legendre-quadrature
- 任意三角形上的任意阶Gauss积分程序 算法详见参考文献 H.T. Rathod, K.V. Nagaraja, B. Venkatesudu, N.L. Ramesh, Gauss Legendre quadrature over a triangle, J. Ind. Inst. Sci. 84 (2004) 183–188.-Gauss Legendre quadrature over any triangle