搜索资源列表
cprogramme
- 一个多项式运算程序 实现多项式的加 减 乘除 乘方 积分 微分 混合运算 一个二叉树运算程序 实现二叉树的创建 复制 深度计算 和树形显示 一个哈夫曼算法的演示程序 实现对电文的编码 编码的输出 和编码的还原 程序共三个 模块已经超过了五个 没有分开写-Operational procedures for the realization of a polynomial polynomial addition and sub
irislocalization
- iris localization using integro differential operator. The rar contains 5 files in order to computer the integro differential operator of the normalized contour of the iris and puil boundaries and then add circles to the
Extreme.Mathematics.QuickStartCS
- 用C#写的数学函数库源码。里面包括复数运算,矩阵运算,解方程,积分微分等。非常有用。-Using C# to write the math library source. Includes the plural computing, matrix operations, solution of equations, such as integro-differential. Very useful.
Extreme.Mathematics.QuickStartVB
- 这里是用VB写的数学库。以前用C、C++写的比较多。内容有:复数运算、矩阵运算、解方程、积分微分等。非常有用。-Here is the math library written in VB. Previously used C, C++ to write many of the comparison. Are as follows: plural computing, matrix operations, solution of equ
Finite_difference_method
- 有限差分法 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域
IntegrodifferentialOperator
- M file of Matlab code (integro differential of iris ) .
1
- 有关计算流体动力学的书籍-偏微积分的数值解法,值得收藏-Books on Computational Fluid Dynamics- numerical solution of partial integro, worth collecting
nalysis
- 非线性中立型延迟积分微分方程一般线性方法的稳定性分析-Nonlinear neutral delay integro-differential equations general linear methods for stability analysis
Integrodifferential-Segmentation
- Iris segmentation based on integro-differential operator
figs
- 一类递归神经网络的仿真源代码--得到的结果能很好的说明它的稳定性。 -the globally asymptotically stable of integro-differential systems modeling neural networks with time-varying delays
MoM_Dipole_Antenna_Current_Distribution_HallenIE.
- Current distribution a center fed (delta-gap) thin dipole antenna (length=2L, radius=a) will be solved with Method of Moments. Hallen s integro-differential equation will be solved by using pulse basis function and point