搜索资源列表
PCA+FCM
- 利用PCA和模糊C均值相结合的方法实现图象的聚类-Using PCA and fuzzy C-means method of combining images to achieve the clustering
tenlei
- function [U,center,result,w,obj_fcn]= fenlei(data) [data_n,in_n] = size(data) m= 2 % Exponent for U max_iter = 100 % Max. iteration min_impro =1e-5 % Min. improvement c=3 [center, U, obj_fcn] = fcm(data
fcm1
- function [U,V,num_it]=fcm(U0,X) % MATLAB (Version 4.1) Source Code (Routine fcm was written by Richard J. % Hathaway on June 21, 1994.) The fuzzification constant % m = 2, and the stopping criterion for
Y_FCMC_Ver.1.04
- README file for Yashil s FCM Clustering MATLAB (Y_FCMC) Toolbox Ver. 1.04 ------------------------------------------------------------------------- This MATLAB Toolbox contains M-files for the following clustering
fcm
- 只要将myfcmseg.m文件中的文件名改为你自己的文件名,并将图像拷贝到该文件夹下,就可以实现fcm分割,非常简单易用。-Just myfcmseg.m file file name to your own file names, and images copied to the folder, you can achieve fcm segmentation, very easy to use.
YE
- 在原始的fcm算法基础上,对算法中的聚类数c和加权指数m给出优选方法,进而而出了fcm参数优选自适应算法,通过人造数据与具有实际背景的数据验证可以看出该算法是有效的,该算法不但可以自适应的给出最佳的聚类数,而且可以验证聚类的有效性,达到最佳聚类的目的。-In the original fcm algorithm based on the number of clusters on the algorithm and the weight
FCM
- 采用不同算法编的一些模糊C-均值聚类(FCM)的matlab程序。-Compiled using a number of different algorithms of fuzzy C-means clustering (FCM) in the matlab program.
fcm
- fcm算法的matlan实现,包含7个m程序-fcm
FCM
- 改进参数fcm分割图像,能通过调节m,c改进图像的分割效果-adaptive segmentation image based on FCM
fcmC
- 在原始的 fcm 算法基础上,对算法中的聚类数 c 和加权指数 m 给出优选方法, 进而而出了 fcm 参数优选自适应算法,通过人造数据与具有实际背景的数据验证可以看出 该算法是有效的,该算法不但可以自适应的给出最佳的聚类数,而且可以验证聚类的有效性, 达到最佳聚类的目的-Fcm algorithm in the original, based on the number of clustering algorithms a
FCM
- FCM1_1.m----------------------------二维随机数据聚类代码 FCM1_2.m----------------------------三维随机数据聚类代码- random data clustering code
fcm
- fcm 聚类两个k近邻算法,k近邻的非正式描述,就是给定一个样本集exset,样本数为M,每个样本点是N维向量,对于给定目标点d,d也为N维向量,要从exset中找出与d距离最近的k个点(k<=N),当k=1时,knn问题就变成了最近邻问-fcm cluster
Fcm
- FCM Data set clustering using fuzzy c-means clustering. [CENTER, U, OBJ_FCN] = FCM(DATA, N_CLUSTER) finds N_CLUSTER number of clusters in the data set DATA. DATA is size M-by-N, where M is the number of data poin
FCM
- VC++实现的fcm算法演示程序,FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最校FCM算法需要两个参数一个是聚类数目C,另一个是参数m。一般来讲C要远远小于聚类样本的总个数,同时要保证C>1。对于m,它是一个控制算法的柔性的参数,如果m过大,则聚类效果会很次,而如果m过小则算法会接近HCM聚类算法。-Realized VC++ FCM algorithm demo
FCM
- FCM in matlab (.m Files)
fcm_code
- 模糊C均值聚类(FCM)算法的实现Matlab源码(其中命名为fcm.m的文件为一个完整的应用函数,其余几个文件为分割开使用的单独的函数)适合于研究图像分割算法的同仁们借鉴。-Fuzzy C-means clustering (FCM) algorithm Matlab source code (which is named fcm.m file a complete application functions, the rest is
Source-Code-FCM
- This MATLAB Toolbox contains M-files for the following clustering algorithms 1. Fuzzy C-Means Clustering (FCM) => Yf_FCMC1.m 2. Possibilistic C-Means Clustering (PCM) => Yf_PCMC1.m 3. Fuzzy-Possibilistic C-Me
FCM
- Data clustering by using Fuzzy c means, where c means number of cluster, m means weight of membership function matrix, X means data input.
FCM.m
- 使用模糊C均值算法对数据集进行聚类分析,效果良好。(The fuzzy C means algorithm is used to cluster the data sets, and the results are good.)
fuzzy.m
- 多种标准的模糊覆盖算法,从数据的标准化到覆盖结果输出,程序内容全面完整(It is a example of FCM algorithm where function is complete and complete.)