搜索资源列表
数据结构的C++描述
- 目 录 译者序 前言 第一部分 预备知识 第1章 C++程序设计 1 1.1 引言 1 1.2 函数与参数 2 1.2.1 传值参数 2 1.2.2 模板函数 3 1.2.3 引用参数 3 1.2.4 常量引用参数 4 1.2.5 返回值 4 1.2.6
求解路径
- 求解有向图的路径-Solving the path digraph
shortestway
- 数据结构最短路径算法实现,可实现有向图,无向图,有向网,无向网四种最短路径求解,最后打印路径,和路径长度-Data structure to achieve the shortest path algorithm can be realized digraph, undirected graph, to the network, without the four shortest path to the network to solve
graph
- 实现无向图(或有向图)的存储表示,并输出对该图的广度优先(或深度优先)遍历。 系统具备如下的功能: 1.初始化。从键盘输入图的顶点数与边数。 2.输出图的相应的存储表示。 3.输出图的广度优先遍历序列。 4.输出图的深度优先遍历序列。-Realize undirected graph (or digraph) express storage and output of the graph breadth-first
youxiangtu
- 编写C程序,随机给出n*n的邻接矩阵,并打印输出邻接矩阵,以及有向图的边的个数,每个顶点的度,并判断该图中是否存在Euler回路: (1)如果为n阶,则随机产生一个n*n的邻接矩阵; (2)输出邻接矩阵,边的个数,每个顶点的度以及图中是否存在Euler回路。 这个题目涉及到了两个主要的知识点,一个是数据结构中的有向图的邻接矩阵的创建,还有就是离散数学中的Euler回路的判定定理。-The preparation of
11
- 建立有向图邻接表 潘一帆制作 数据结构小作业-The establishment of digraph adjacency list data structure潘一帆produced a small operating
graph
- c++实现的有向图的临界矩阵构造,深度广度的遍历。-c++ achieved critical digraph matrix structure, depth, breadth Ergodic.
S030602102
- 赋权有向图中心问题 问题描述: 设G=(V,E)是一个赋权有向图,v是G的一个顶点, v的偏心距定义为: Max {w∈ V,从w到v的最短路径长度} G中偏心距最小的顶点称为G的中心。试利用Floyd 算法设计一个求赋权有向图中心的算法。-Empowering the central issue Digraph Problem Descr iption: Let G = (V, E
TopoSort
- 有向图 编写程序判断该图是否含有环 如没有则输出其拓扑序列-Digraph write a program to determine whether it contains any part of the plan if there is no sequence of the output of its topological
graphic
- 本压缩文件为完整的二分图最优匹配的KM算法程序和求有向图的欧拉回路的算法程序-KM algorithm and Euler circuit of Digraph
digraph
- 用于统计任一英文文档中26个字母的统计频率,得到频率矩阵-Second, it fuses the features of the first singular value component and the second one, and then gets the complex feature vectors which reflect not only the statistic frequency but also the s
GrTheory
- 图论的相关MATLAB CODE 非常好用-grBase- find all bases of digraph grCoBase- find all contrabases of digraph grCoCycleBasis- find all independent cut-sets for a connected graph grColEdge- solve the color problem for
program
- The preparation of C procedures, were randomly given n* n s adjacency matrix and adjacency matrix printouts, as well as to map the number of edges, each vertex degrees, and determine the existence of the map Euler circui
bchsabdcbdb
- The preparation of C procedures, were randomly given n* n s adjacency matrix and adjacency matrix printouts, as well as to map the number of edges, each vertex degrees, and determine the existence of the map Euler circui
ford.c
- Ford algorithms trees The Bellman–Ford algorithm computes single-source shortest paths in a weighted digraph. For graphs with only non-negative edge weights, the faster Dijkstra s algorithm also solves the problem. Thu
dijkstra_cSharp
- 求有向图的邻接矩阵中,两点之间的最短路径以及长度-Digraph adjacency matrix, the shortest path between two points and the length of the
1
- find all bases of digraph
Bellman-Fords-Shortest-Paths
- The Bellman–Ford algorithm computes single-source shortest paths in a weighted digraph. For graphs with only non-negative edge weights, the faster Dijkstra s algorithm also solves the problem.
path
- c++语言,用分指定结算发计算有向图或无向图中任意两点的距离-c++ language, specify the settlement made with the calculation of sub-digraph or undirected graph, the distance between any two points
database-Graph
- 一:实验目的: (1)掌握图的存储思想及其存储实现。 (2)掌握图的深度、广度优先遍历算法思想及其程序实现。 (3)掌握图的常见应用算法的思想及其程序实现。 (4)理解有向无环图、最短路径等算法 二:实验内容: 以下实验内容,1和2为必做内容,3为选做内容。 1.有向图 (1)键盘输入数据,建立一个有向图的邻接表,并输出该邻接表。 (2)在有向图的邻接表的基础上计算各顶点的度,并输出。