搜索资源列表
cs229-gaussians
- stochastic by abcdef123456
machine-learning-courses_stanford
- 斯坦福大学Andrew Ng讲授的机器学习课程的全程讲义及录音对应的文字资料,对许多常用机器学习算法有着深入系统的讲解。-The notes of Machine learning courses in Stanford University。
assignment1.pdf
- this the stanford cs229 problem set I -this is the stanford cs229 problem set I
ProblemP1a.pdf
- Problem 1a solution for cs229 PS1
cs229-notes12
- 这是 Andrew Ng 机器学习讲义《Reinforcement Learning and Control》,包含了离散和连续MDP的内容,比官网的课件全。(官网的缺乏连续MDP部分)-This is Andrew Ng Machine Learning Materials " Reinforcement Learning and Control" , contains a discrete and continuou
machine-learning-ex5
- 斯坦福大学机器学习公开课CS229 课程作业5-Stanford University public courses CS229 machine learning coursework 5
machine-learning-ex1
- 斯坦福大学机器学习公开课CS229 课程作业4-Stanford University public courses CS229 machine learning coursework 4
machine-learning-ex2
- 斯坦福大学机器学习公开课CS229 课程作业2-Stanford University public courses CS229 machine learning coursework 2
cs229-notes1
- 课件 美国斯坦福大学机器学习 课件 美国斯坦福大学机器学习 -the class of mechine learning
cs229-notes1
- 机器学习入门,斯坦福大学吴恩达教授机器学习视频第一课讲义,全英文。(Introduction to machine learning, Professor Wu Enda, Stanford University, machine learning video lesson 1 lecture notes, all english.)
-机器学习公开课课件
- 斯坦福机器学习公开课课件,希望对刚学机器学习的同学有点帮助(Stanford Machine Learning Open Courseware)
PCA-master
- PCA降维 无监督特征提取 参考文献:Paper used - http://cs229.stanford.edu/notes/cs229-notes10.pdf(PCA # PCA - Unsupervised feature extraction technique Paper used - http://cs229.stanford.edu/notes/cs229-notes10.pdf)