搜索资源列表
subdivide20NT
- 基于catmull-clark和loop细分的精确细分曲面曲面的法向控制程序-on-clark loop and sub-sub-surface precision of surfaces to control procedures
subdivisionImplementation
- Implementation of subdivision: Implement the Catmull-Clark subdivision scheme. Your program should take a single argument on the command line, a mesh to subdivide.-Implementation of subdivision : Implement the Catmull-
catmull-rom
- catmull-rom的源代码 catmull-rom的源代码 -catmull-rom source code c atmul l-rom source code catmull -rom source code c atmull-rom source code
catmull
- catmull-clark与butterfly的实现源代码。在VC6.0下及OPENGL中实现
subdivide20NT
- 基于catmull-clark和loop细分的精确细分曲面曲面的法向控制程序-on-clark loop and sub-sub-surface precision of surfaces to control procedures
subdivisionImplementation
- Implementation of subdivision: Implement the Catmull-Clark subdivision scheme. Your program should take a single argument on the command line, a mesh to subdivide.-Implementation of subdivision : Implement the Catmull-
catmullClark
- catmullClark细分算法代码,直接运行的结果为一个实例的细分结果-catmullClark subdivision algorithm code directly to the results of the operation of an example of the breakdown of the results
catmull-rom
- catmull-rom的源代码 catmull-rom的源代码 -catmull-rom source code c atmul l-rom source code catmull-rom source code c atmull-rom source code
catmull
- catmull-clark与butterfly的实现源代码。在VC6.0下及OPENGL中实现-catmull-clark and butterfly realization of the source code. In VC6.0 and OPENGL achieve under
subdivide20_renew
- 作者:Henning Biermann 可以解析VRML文件,将数据分类存放在一个树结构中后在计算机上显示成三维图形,并应用Loop和Catmull—Clark的细分方法,对图形细分,使其更接近真实图形。-Author:Henning Biermann parse VRML file,restore the data in a tree and display them in the computor,subdivide the
NDimensionalCardinal(CatmullRom)SplineInterpolatio
- N-Dimensional Cardinal(Catmull-Rom) Spline Interpolation
subdivision
- 细分曲面的参数求值 Catmull-Clark细分曲面与Loop细分曲面-Subdivision surface parameters evaluated subdivision surface Catmull-Clark Subdivision Surfaces with Loop
Doo-sabin_catmull-clark
- Doo-sabin与catmull-clark细分曲面源程序,对于Doo-sabin细分曲面,用户可以根据选项选择显示纹理图还是线条图,可以多次细分。catmull-clark为线条图;这两个程序是分开写的,在一个文件夹内。-Doo-sabin catmull-clark subdivision surfaces with the source code for the Doo-sabin subdivision surface, th
07object3d_1
- Introduction to mathematical splines Bezier curves Continuity conditions (C0, C1, C2, G1, G2) Creating continuous splines C2-interpolating splines B-splines Catmull-Rom splines
Catmull-Rom
- CSHARP 编写的XNA游戏程序,采用VS2010变成,需安装XNA4.0-CSHARP preparation of the XNA games, using VS2010 to become, to be installed XNA4.0
overhauser_demo
- 游戏中由于自动控制相机路径的演示程序-Many people are impressed by realistic camera animations in games or multimedia demos. The math behind what is commonly called camera interpolation is actually pretty simple. In this article, I will fo
capi
- Bspline曲线生成程序Catmull-Rom Spline, Lagrange, Natural Cubic Spline, and NURBS方法获得B样条曲线-Implementation of various mathematical curves that define themselves over a set of control points. The API is written in Java. The curve
subdivision
- catmull-clark subdivision surface sampler
Catmull-Clark-
- 设P(m,n)是初始控制点列,即原曲面的点(m行n列)。Q(m,n)是一次细分后得到的曲面的控制节点。 此函数采用Catmull-Clark细分曲面算法,对双三次B样条曲面细分,即m=n=4。 利用我们在13章第四节学过的知识,有公式MQM =SMPM S ,其中M,S可由课件知 构造初始控制点列(p1,p2),其中p1是P的行坐标,p2是P的列坐标 -Let P (m, n) is the initial contro
catmull
- MATLAB编写的catmullclark细分曲面算法的实例-Examples of MATLAB prepared catmull clark subdivision surfaces algorithms