搜索资源列表
Minimum-Bayes-classifier-error-rate
- 这是模式识别中最小错误率Bayes分类器设计方案。 自行完善了在不同先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩
Minimum-Risk-Bayes-classifier
- 这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句
patter
- 1. 以身高为例,画出男女生身高的直方图并做对比; 2. 采用最大似然估计方法,求男女生身高以及体重分布的参数; 3. 采用贝叶斯估计方法,求男女生身高以及体重分布的参数(假定方差已知,作业请注明自己选定的一些参数情况); 4. 采用最小错误率贝叶斯决策,画出类别判定的决策面。并判断某样本的身高体重分别为(160,45)时应该属于男生还是女生?为(178,70)时呢?(1. take height as an example, d
bayes_C++
- 贝叶斯分类器-联合变量_C++,只需更改样本文件名即可测试。(The Bias classifier - the joint variable _C++, can be tested only by changing the name of the sample file.)
bayes_independent variable _C++
- 贝叶斯分类器-独立变量_C++,只需更改样本文件名即可测试。(Bias classifier - independent variable _C++, can be tested only by changing the name of the sample file.)
bayes_independent variable _matlab
- 贝叶斯分类器-独立变量_matlab,只需更改样本文件名即可测试。(Bias classifier - independent variable _matlab, can be tested only by changing the name of the sample file.)
bayes_joint variable _matlab
- 贝叶斯分类器-联合变量_C++,只需更改样本文件名即可测试。(The Bias classifier - the joint variable _C++, can be tested only by changing the name of the sample file.)