搜索资源列表
模拟退火法解决TSP问题
- 使用模拟退火算法计算旅行商问题,内含10城市和20城市的样例代码。
for TSP(Matlab)
- 模拟退火算法用于求解旅行商问题的matlab源程序-simulated annealing algorithm for solving the traveling salesman problem Matlab source
aiwa
- TSP问题(货郎担问题,旅行商问题)的模拟退火算法通用malab源程序-Traveling Salesman Problem (TSP, the traveling salesman problem), simulated annealing algorithm common source malab
模拟退火算法求解TSP问题
- 模拟退火算法求解TSP问题,希望对大家有所帮助-simulated annealing algorithm for TSP, we hope to help
模拟退火
- 本程序用模拟退火算法实现了旅行商问题(tsp问题)-the procedures used simulated annealing algorithm to achieve the traveling salesman problem (tsp)
一些解决TSP问题的算法及源代码模拟退火算法
- 一些模拟退火算法及元代码,可以用于解决TSP问题的等,我已经验证过了 可以的,速度比较快,大家可以下载试试! -some simulated annealing yuan and the code can be used to solve problems such as TSP, I can be tested, and faster speed, you can download a try!
SimulatedAnnealing(TSP)CSHARP
- 运用c#语言实现模拟退火算法,同时利用该算法解决旅行商(TSP)问题,获得遍历所有城市序号的最优路径。-use c# language simulated annealing, while using the algorithm to solve traveling salesman (TSP). access to the serial numbers of all the cities traverse the optimal pa
TSP(travel)
- 该程序是模拟退火算法应用中旅行商问题得MATLAB实现-that the procedure was simulated annealing applications traveling salesman problem in MATLAB
m
- 模拟退火算法实现,内负有模拟退火的聚类,TSP等等6种问题的实现例子,在EXAMPLE文件夹内-Simulated annealing algorithm, which has a simulated annealing clustering, TSP, etc. 6 kinds of issues realize examples folder in EXAMPLE
TSP
- 在Visual C++ 编译环境下,模拟退火算法程序,并利用它们求解了48个城市的TSP问题。-In the Visual C++ Compiler environment, the simulated annealing algorithm procedures and use them to solve a 48 cities TSP problem.
tsp
- 用模拟退火算法解决旅行商问题,算法较简单-Using simulated annealing algorithm to solve traveling salesman problem, relatively simple algorithms
tsp
- 用经典算法--模拟退火算法求解经典问题旅行商(Travel Sales Problem)问题。-With the classic algorithm- simulated annealing algorithm to solve the classic traveling salesman problem (Travel Sales Problem) problem.
tsp
- TSP算法实例,模拟退火算法 货郎担问题的求解-Examples of TSP algorithm, simulated annealing algorithm郎goods tam problem solving
TSP
- tsp(旅行商问题) 利用matlab遗传算法、模拟退火算法以及lingo动态规划求解-tsp (TSP) using matlab genetic algorithms, simulated annealing algorithm and dynamic programming to solve lingo
TSP
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解
模拟退火算法
- 基于模拟退火算法的求解TSP问题的matlab程序,对于学习算法的初学者,可作为入门的简单程序(To solve the problem of TSP simulated annealing algorithm based on the matlab program, for beginners learning algorithm, can be used as a simple entry procedures)
模拟退火算法
- 使用模拟退火算法求解tsp问题,简单易学(Using simulated annealing algorithm to solve TSP problem, easy to learn)
模拟退火算法
- 此问题为传统的TSP问题,从一个城市出发,到达目的地,所用算法为模拟退火算法,算法可以完美运行。(This problem is a traditional TSP problem, starting from a city, reaching the destination, the algorithm is simulated annealing algorithm, the algorithm can run perfectly.
模拟退火
- 利用模拟退火算法进行仿真实验,解决TSP问题(Using simulated annealing algorithm to solve TSP)
模拟退火算法及其在求解TSP中的应用
- 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis [1] 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。(The earliest idea of Simulated Annealing (SA)