搜索资源列表
相关系数
- SPEARMAN ,PERSON相关系数
spear
- 斯皮尔曼秩相关系数,可用于两对序列的相关统计分析,越大表示相关性越强。-Spearman s rank correalation coefficient
spearman
- 用于计算等级相关系数(spearman系数)的子程序。-Used to calculate the rank correlation coefficient (spearman coefficient) subroutine.
kendall
- 肯德尔和谐系数是计算多个等级变量相关程度的一种相关量。前述的spearman等级相关讨论的是两个等级变量的相关程度,用于评价时只适用于两个评分者评价N个人或N件作品,或同一个人先后两次评价N个人或N件作品,而kandall和谐系数则适用于数据资料是多列相关的等级资料,即可是k个评分者评(N)个对象,也可以是同一个人先后k次评N个对象。通过求得kandall和谐系数,可以较为客观地选择好的作品或好的评分者。-Kendall coeffic
xiangguanfenxi
- 计算某一矩阵的pearson和Spearman相关系数矩阵-Computing a matrix pearson and Spearman correlation coefficient matrix
PEARSON-SPEARMAN-KENDALL
- PEARSON’S VERSUS SPEARMAN’S AND KENDALL’S CORRELATION 这个关于这个三个统计检验方法的比较,很全面的-PEARSON' S VERSUS SPEARMAN' S AND KENDALL' S CORRELATION the three statistical tests on this comparison, it is a comprehensive
spearman-kendall-pettitt
- 水文趋势、突变点分析的matlab相关程序——spearman、kendall、pettitt法-Hydrological trends point mutation analysis matlab procedures- spearman, kendall, pettitt France
principal-component-analysis
- 因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。-Factor analysis is the study of common factors extracted from the variable group statistical techniques. First p
SpearmanCorrelation
- 求解斯皮尔曼等级相关系数,其中包括两种不同公式的求解方法-Solving Spearman' s rank correlation coefficient, which includes two different methods for solving equations
spearman
- spearman秩相关系数计算代码,fortran90编写,用于判断数列发展趋势-speaerman rank coefficent code by fortran 90
spearman-rank
- Spearman rank correlation
spearman
- 斯皮尔曼相关系数计算,计算数据相关系数,两列数据相关性-Spearman rank correlation coefficient
R对成绩的皮尔逊检验和秩和检验
- 学生成绩的相关影响因素之间的相关性检验和秩相关检验(Correlation test and rank correlation test among the related factors of student achievement)
Corplot
- 可做皮尔逊相关关系图,更改可做斯皮尔曼相关(Can do Pearson correlation diagram, change can do Spearman related. Pearson & Spearman)
copula
- 计算三大相关性系数(pearson、spearman、kendall)copula函数族检验(The family of three correlation coefficients (Pearson, Spearman, Kendall) copula is calculated.)
Copula应用实例及程序
- 读取数据、绘制频率直方图、*计算偏度和峰度*、正态性检验*、求经验分布函数值*、核分布估计**、核分布估计**、*求Copula中参数的估计值**、绘制Copula的密度函数和分布函数图******、求Kendall秩相关系数和Spearman秩相关系数*******、模型评价(My English is poor i hope you can understand from the chinese introdunction