搜索资源列表
pca
- 主成分分析程序,可用于数据降维及特征提取。-Principal component analysis procedures, can be used for data dimensionality reduction and feature extraction.
PCA
- 对输入的高维特征向量进行pca降维后输出低维的特征向量-PCA dimensionality reduction
deboor-cox
- 目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞
CODE
- 1.GeometricContext文件是完成图片中几何方向目标分类。 参考文献《Automatic Photo Pop-up》Hoiem 2005 2 GrabCut文件是完成图像中目标交互式分割 参考文献《“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts》 C. Rother 2004 3 HOG文件是自己编写的根
ensembles_pca_svm_new10v
- pca做特征降维,然后进行特征空间随机分割构造多个svm分类器,并行处理,对样本进行分类,基于特征空间的svm多分类器-using pca reduce feature dimension,split feature space and then randomly divided over svm classifier construction, parallel processing, the samples were classif
gabor-pca
- 本程序是先用gabor小波变换对人脸图像处理,然后在用pca进行降维,最后用svm分类器进行多分类分类识别,包扩完整的orl人脸库,需注意的是,svm工具箱是用的libsvm工具箱,运行前先配置好libsvm。版本号:libsvm-mat-2[1].89-3[FarutoUltimate3.0]-This procedure is to use the human face gabor wavelet transform image p
DCT
- 先用小波变换进行降维后,再用DCT进行特征提取,然后用SVM分类识别,SVM需先安用libsvm工具箱,然后再可以运行,该程序包含ROL人脸库,一并上传。-First reduce the dimension of the wavelet transform, the then DCT feature extraction, and then use SVM classification, SVM must be safe to use
Classification-toolbox
- 通过降维处理,高维数据的分类一般可以转换为2维数据分类。此源码包含一个2维-2类数据分类工具箱。包括:ML,K-NN,SVM,LS,DB-Through the dimension reduction processing, high dimensional data classification commonly can convert to 2 d data classification. This source includes
code-PCA-SVM
- 这是一个包含PCA降维的matlab程序加上用svm分类的一个程序。-This is a PCA dimensionality reduction plus matlab program contains a program with svm classification.
SVM
- 支持向量机用于训练和分类,包括PCA降维等函数-Support vector machines for training and classification, including functions such as PCA dimension reduction
PCA_gabor_svm
- Gabor小波变换和PCA降维在用SVM分类(Gabor wavelet transform and PCA dimension reduction are classified in SVM)
SVMRFE2
- 用于SVM降维,可以对维度的重要性进行评价(For dimensionality reduction in SVM, the importance of dimensionality can be evaluated)
(PCA+SVM)人脸识别
- 人脸识别,降维 加分类,主成分分析降维,支持向量机分类(Face recognition, principal component analysis reduced Vega classification, dimension reduction, support vector machine classification)
python_face_recog
- 基于python+opencv 的 人脸识别,对一段视频进行读取,并检测出人脸,然后进行PCA 降维,最后用SVM进行人脸识别,识别率94%左右。(Based on python + opencv face recognition, a video was read, and face detection, and then PCA dimension reduction, and finally SVM face recognitio
PCA+SVM
- 采用经典的ORL人脸数据集,利用PCA进行进行降维,然后用SVM进行数据集的分类和训练。上传文件内包含libSVM3.2安装包(The classical ORL face dataset is used for dimension reduction by PCA, and then SVM is used to classify and train the dataset.)
ML_SVM-master
- 算法功能是SVM分类,使用PCA降维处理,一个文件是直接分类,另一个是降维后分类(Classification using SVM algorithm)
PCA+SVM
- 先用PCA降维,在利用支持向量机进行分类,这个分类是二分类,所以PCA的降维降到两维即可分类。(Firstly, PCA dimensionality reduction is used to conduct classification with support vector machine. This classification is binary classification, so the dimensionality red
pca
- 做降维处理,做分类,非常好的数据集合,可以用于一般的数据清晰(Decomposition is a very interesting great name and it is very very very good , so you will use it)
sklearn-SVM
- 支持向量机(SVM)——分类预测,包括核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等(Support vector machine (SVM) - classification prediction, including kernel function parameter adjustment, unbalanced data problem, feature dimensionality r
基于PCA和SVM的人脸识别系统
- 先通过图像处理提取人脸的各个特征,然后对人脸通过PCA进行降维,然后通过SVM进行人脸识别(Firstly, the features of human face are extracted by image processing, then the dimension of human face is reduced by PCA, and then the face is recognized by SVM)