搜索资源列表
surf源码
- surf算法源码
OPEN-SURF
- 基于OPEN的SURF算法
SURF实现
- SURF算法的VC实现
SURF-V1.0.9-WinDLLVC
- 基于OpenCV的SURF算法实现。
surf-1.0.6.tar
- surf-1.0.6.tar.gz surf算法c源码-surf-1.0.6.tar.gz surf algorithm c source
OpenSURF_version1c(1)
- SURF算法,是SIFT的升级版,速度更快,性能也不差,快速实现图像特征点的检测和匹配。-SURF algorithm, is an upgraded version of SIFT, faster, not bad performance, rapid detection of image feature points and matching.
SURF
- surf算法的OpenCV实现,Linux的-OpenCV implementation surf algorithm, Linux' s
surf
- 自然场景图像局部不变特征检测与描述,surf算法的图像匹配-Natural scene image detection and descr iption of local invariant features, surf image matching algorithm
CV-SURF
- 基于vc++6.0的SURF算法的程序代码,可以直接运行-Based on the SURF algorithm for vc++6.0 program code can be run directly
SURF
- SURF算法的原文翻译,包括特征提取和特征匹配,加入了作者的一些理解-SURF translation of the original algorithm, including feature extraction and feature matching, adding some understanding of the author
SURF
- 使用surf算法来实现视频稳像第一步的特征点标定,为后续进行运动估计做准备。(Surf algorithm is used to realize the calibration of feature points in the first step of video image stabilization, so as to prepare for the subsequent motion estimation.)
基于SURF算法和OpenCV的掌纹识别技术研究
- 掌纹识别 关于掌纹识别的预处理以及SURF算法的掌纹识别(palmprint recognition)
SURF
- 旋转了SURF算法的滤波模板,使得配准效率得到提高。(The filtering template of the SURF algorithm is rotated so that the registration efficiency is improved.)
Untitled2
- SURF算法MATLAB实现,可以拿来验证一些东西(SURF algorithm MATLAB implementation, can be used to verify some things)
surf
- surf算法 图像拼接 opensurf(surf Image stitching opensurf)
图像融合算法
- 针对电气设备同一场景的红外与可见光图像间一致特征难以提取和匹配的问题,提出了一种基于斜率一致性的配准方法。首先通过数学形态学方法分别提取红外与可见光图像的边缘,得到粗边缘图像;然后通过SURF算法提取两幅边缘图像的特征点,根据正确的匹配点对之间斜率一致性的先验知识,进行特征点匹配;最后通过最小二乘法求得仿射变换模型参数并实现两幅图像的配准。实验结果表明,该方法有效提高了匹配点对的正确率,能够对电气设备红外和可见光图像实现高精度的配准。(
SURF.tar
- 特征点检测一种基于opencv的SURF算法(An opencv-based SURF algorithm for feature point detection)
2Dpicture
- 通过opencv中的surf算法实现物体识别(Realization of object recognition by surf algorithm in opencv)
surf
- 图像特征提取算法--SURF算法Matlab代码(SURF algorithm matlab code)
RANSAC+SURF
- 基于SURF算法实现图像特征提取与描述,使用RANSAC进行图像细配准(SURF algorithm was used to extract and describe image features, and RANSAC was used for image registration)