搜索资源列表
Fast LMS-Newton algorithms based on autoregressive
- 一种利用LMS的回声抑制的实现方法,经典文献-echo suppression of the method, classic literature
LMS_Newton
- 用于仿真牛顿LMS算法-for LMS algorithm simulation Newton
LMS_Newton
- 用于仿真牛顿LMS算法-for LMS algorithm simulation Newton
Fast LMS-Newton algorithms based on autoregressive
- 一种利用LMS的回声抑制的实现方法,经典文献-echo suppression of the method, classic literature
matlab-newton
- matlab有用的事例,主要为牛顿算法方面的-matlab useful examples, the main aspects of Newton
LMS_Newton
- LMS-Newton自适应算法源码 反正结果刻与LMS算法相比较,显示了较好的性能。-LMS-Newton adaptive algorithm source code in any case engraved with the LMS algorithm results compared, showing a better performance.
Simulation_of_a_variety_of_LMS_Algorithm
- 仿真了LMS算和和牛顿算法以及最速下降算法有图形可以清楚的看到几个算法的收敛速度的快慢-Calculation and simulation of the LMS and Newton algorithm and the steepest descent algorithm can clearly see several graphical convergence of the algorithm for the pace of
LMS_Newton
- function of matlab LMS-Newton algorithm
system-identification
- LMS算法实现系统辨识 LMS-Newton算法实现系统辨识 SER算法实现系统辨识 LMS-Lattice算法实系统辨识 SER-Lattice算法实现系统辨识-Lms Lmsnewton SER LMS-lattice
LMS_Newton
- 基于牛顿法的LMS自适应滤波器设计,基于MATLAB实现-Newton method based on the LMS adaptive filter based on MATLAB, design
zishiying
- LMS与LMS/NEWTON算法的自适应性能曲面-LMS and LMS/NEWTON algorithms, adaptive performance surface
LMS
- 本程序是自适应算法的实现,他主要实现了牛顿方式的自适应迭代方式。根据不同的迭代次数可以看收敛效果-This program is to achieve adaptive algorithm, the main achievement of his way to Newton adaptive iterative way. Convergence effect can be seen depending on the number of
Matlab-train
- 有关自适应算法的程序 包括最速下降法,牛顿法,LMS和Newdon-LMS和序贯回归算法-For adaptive algorithm program Including the steepest descent method, Newton s method, LMS and Newdon-LMS and sequential regression algorithm
LMS-based_Algorithms
- 基于最小均方算法的自适应滤波算法设计LMS,NLMS,LMS-Newton-Least mean square based_Algorithms,
algorithm_compare
- 自适应LMS算法、LMS_Newton算法、Newton算法 Steepest Descent算法、Sequentialregression 迭代求最佳权值对比-Adaptive LMS algorithm, LMS Newton algorithm, Newton algorithm Steepest Descent algorithm, Sequentialregression Iterative optimal weigh